
Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 1 of 156

Microsoft Windows

Common Criteria Evaluation
Microsoft Windows 8.1

Microsoft Windows Phone 8.1

Security Target

Document Information
Version Number 1.0
Updated On August 21, 2015

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 2 of 156

This is a preliminary document and may be changed
substantially prior to final commercial release of the
software described herein.

The information contained in this document
represents the current view of Microsoft Corporation
on the issues discussed as of the date of publication.
Because Microsoft must respond to changing market
conditions, it should not be interpreted to be a
commitment on the part of Microsoft, and Microsoft
cannot guarantee the accuracy of any information
presented after the date of publication.

This document is for informational purposes only.
MICROSOFT MAKES NO WARRANTIES, EXPRESS
OR IMPLIED, AS TO THE INFORMATION IN THIS
DOCUMENT.

Complying with all applicable copyright laws is the
responsibility of the user. This work is licensed under
the Creative Commons Attribution-NoDerivs-
NonCommercial License (which allows redistribution
of the work). To view a copy of this license, visit
http://creativecommons.org/licenses/by-nd-nc/1.0/ or
send a letter to Creative Commons, 559 Nathan
Abbott Way, Stanford, California 94305, USA.

Microsoft may have patents, patent applications,
trademarks, copyrights, or other intellectual property
rights covering subject matter in this document.
Except as expressly provided in any written license
agreement from Microsoft, the furnishing of this
document does not give you any license to these
patents, trademarks, copyrights, or other intellectual
property.

The example companies, organizations, products,
people and events depicted herein are fictitious. No
association with any real company, organization,
product, person or event is intended or should be
inferred.

© 2015 Microsoft Corporation. All rights reserved.

Microsoft, Active Directory, Visual Basic, Visual
Studio, Windows, the Windows logo, Windows NT,
and Windows Server are either registered trademarks
or trademarks of Microsoft Corporation in the United
States and/or other countries.

The names of actual companies and products
mentioned herein may be the trademarks of their
respective owners.

http://creativecommons.org/licenses/by-nd-nc/1.0/

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 3 of 156

TABLE OF CONTENTS

SECURITY TARGET ..1

TABLE OF CONTENTS ..3

LIST OF TABLES ...8

1 SECURITY TARGET INTRODUCTION ..9

1.1 SECURITY TARGET, TOE, AND COMMON CRITERIA (CC) IDENTIFICATION ..9

1.2 CC CONFORMANCE CLAIMS ... 10

1.3 CONVENTIONS, TERMINOLOGY, ACRONYMS .. 10

1.3.1 CONVENTIONS .. 10

1.3.2 TERMINOLOGY .. 10

1.3.3 ACRONYMS... 14

1.4 ST OVERVIEW AND ORGANIZATION ... 14

2 TOE DESCRIPTION ... 14

2.1 PRODUCT TYPES .. 14

2.2 PRODUCT DESCRIPTION .. 15

2.3 SECURITY ENVIRONMENT AND TOE BOUNDARY .. 15

2.3.1 LOGICAL BOUNDARIES .. 15

2.3.2 PHYSICAL BOUNDARIES ... 16

2.4 TOE SECURITY SERVICES ... 16

3 SECURITY PROBLEM DEFINITION .. 19

3.1 THREATS TO SECURITY .. 19

3.2 ORGANIZATIONAL SECURITY POLICIES ... 20

3.3 SECURE USAGE ASSUMPTIONS .. 20

4 SECURITY OBJECTIVES ... 22

4.1 TOE SECURITY OBJECTIVES .. 22

4.2 SECURITY OBJECTIVES FOR THE OPERATIONAL ENVIRONMENT .. 22

5 SECURITY REQUIREMENTS ... 24

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 4 of 156

5.1 TOE SECURITY FUNCTIONAL REQUIREMENTS ... 24

5.1.1 CRYPTOGRAPHIC SUPPORT (FCS) ... 26

5.1.1.1 Cryptographic Key Generation for Key Establishment (FCS_CKM.1(ASYM KA)) 26

5.1.1.2 Cryptographic Key Generation for Authentication (FCS_CKM.1(ASYM AU)) 27

5.1.1.3 Cryptographic Key Generation for WLAN (FCS_CKM.1(WLAN)) ... 27

5.1.1.4 Cryptographic Key Distribution for WLAN (FCS_CKM.2) .. 27

5.1.1.5 Extended: Cryptographic Key Support for Root Encryption Key (FCS_CKM_EXT.1) 27

5.1.1.6 Extended: Cryptographic Key Random Generation for Data Encryption Keys

(FCS_CKM_EXT.2(128)) ... 27

5.1.1.7 Extended: Cryptographic Key Random Generation for Data Encryption Keys

(FCS_CKM_EXT.2(256)) ... 28

5.1.1.8 Extended: Cryptographic Key Generation for Key Encryption Keys (FCS_CKM_EXT.3) 28

5.1.1.9 Extended: Cryptographic Key Destruction (FCS_CKM_EXT.4) .. 28

5.1.1.10 Extended: TSF Wipe (FCS_CKM_EXT.5) ... 28

5.1.1.11 Extended: Cryptographic Salt Generation (FCS_CKM_EXT.6) ... 29

5.1.1.12 Cryptographic Operation for Data Encryption/Decryption (FCS_COP.1(SYM)) 29

5.1.1.13 Cryptographic Operation for Hashing (FCS_COP.1(HASH)) .. 29

5.1.1.14 Cryptographic Operation for Signature Algorithms (FCS_COP.1(SIGN)) 29

5.1.1.15 Cryptographic Operation for Keyed Hash Algorithms (FCS_COP.1(HMAC)) 29

5.1.1.16 Cryptographic Operation for Password Based Key Derivation (FCS_COP.1(PBKD)) 30

5.1.1.17 Extended: Initialization Vector Generation (FCS_IV_EXT.1) ... 30

5.1.1.18 Extended: Random Bit Generation (FCS_RBG_EXT.1) .. 30

5.1.1.19 Extended: Cryptographic Algorithm Services (FCS_SRV_EXT.1) ... 30

5.1.1.20 Extended: Cryptographic Key Storage (FCS_STG_EXT.1) .. 30

5.1.1.21 Extended: Encrypted Cryptographic Key Storage (FCS_STG_EXT.2) 31

5.1.1.22 Extended: Integrity of Encrypted Key Storage (FCS_STG_EXT.3) .. 31

5.1.1.23 Extended: EAP TLS Protocol (FCS_TLS_EXT.1)... 31

5.1.1.24 Extended: TLS Protocol (FCS_TLS_EXT.2) .. 32

5.1.1.25 Extended: HTTPS Protocol (FCS_HTTPS_EXT.1) .. 32

5.1.2 USER DATA PROTECTION (FDP) ... 32

5.1.2.1 Extended: Security Attribute Based Access Control (FDP_ACF_EXT.1) 32

5.1.2.2 Extended: Data at Rest Protection (FDP_DAR_EXT.1(128)) .. 32

5.1.2.3 Extended: Data at Rest Protection (FDP_DAR_EXT.1(256)) .. 33

5.1.2.4 Extended: Sensitive Data Encryption (FDP_DAR_EXT.2) .. 33

5.1.2.5 Extended: Certificate Data Storage (FDP_STG_EXT.1) .. 33

5.1.3 IDENTIFICATION AND AUTHENTICATION (FIA)... 33

5.1.3.1 Extended: Authorization Failure Handling (FIA_AFL_EXT.1) ... 33

5.1.3.2 Extended: Bluetooth Authentication (FIA_BLT_EXT.1) ... 33

5.1.3.3 Extended: PAE Authentication (FIA_PAE_EXT.1) .. 33

5.1.3.4 Extended: Password Management (FIA_PMG_EXT.1) .. 33

5.1.3.5 Extended: Authorization Throttling (FIA_TRT_EXT.1) ... 34

5.1.3.6 Protected Authorization Feedback (FIA_UAU.7) .. 34

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 5 of 156

5.1.3.7 Extended: Authentication for Cryptographic Operation (FIA_UAU_EXT.1) 34

5.1.3.8 Extended: Timing of Authentication (FIA_UAU_EXT.2) .. 34

5.1.3.9 Extended: Re-Authorizing (FIA_UAU_EXT.3) .. 34

5.1.3.10 Extended: Validation of Certificates (FIA_X509_EXT.1) .. 34

5.1.3.11 Extended: X.509 Certificate Authentication (FIA_X509_EXT.2) .. 35

5.1.3.12 Extended: Request Validation of Certificates (FIA_X509_EXT.3) .. 35

5.1.4 SECURITY MANAGEMENT (FMT) ... 35

5.1.4.1 Management of Security Functions Behavior by the User (FMT_MOF.1(USER)) 35

5.1.4.2 Management of Security Functions Behavior by the Organization (FMT_MOF.1(ORG)) 37

5.1.4.3 Specifications of Management Functions (FMT_SMF.1) .. 38

5.1.4.4 Extended: Specification of Remediation Actions (FMT_SMF_EXT.1) ... 40

5.1.5 PROTECTION OF THE TSF (FPT) ... 41

5.1.5.1 Extended: Anti-Exploitation Services for Address Space Layout Randomization

(FPT_AEX_EXT.1) ... 41

5.1.5.2 Extended: Anti-Exploitation Services for Memory Page Permissions (FPT_AEX_EXT.2) 41

5.1.5.3 Extended: Anti-Exploitation Services for Stack Overflow Protection (FPT_AEX_EXT.3) 41

5.1.5.4 Extended: Domain Isolation (FPT_AEX_EXT.4) ... 41

5.1.5.5 Extended: Plaintext Key Storage (FPT_KST_EXT.1) ... 41

5.1.5.6 Extended: No Key Transmission (FPT_KST_EXT.2) .. 41

5.1.5.7 Extended: No Plaintext Key Transport (FPT_KST_EXT.3) .. 41

5.1.5.8 Extended: Self-Test Event Notification (FPT_NOT_EXT.1) .. 41

5.1.5.9 Reliable Time Stamps (FPT_STM.1)... 42

5.1.5.10 Extended: TSF Cryptographic Functionality Testing (FPT_TST_EXT.1) 42

5.1.5.11 Extended: TSF Integrity Testing (FPT_TST_EXT.2) ... 42

5.1.5.12 Extended: Trusted Update: TSF Version Query (FPT_TUD_EXT.1) ... 42

5.1.5.13 Extended: Trusted Update Verification (FPT_TUD_EXT.2) ... 42

5.1.6 TOE ACCESS (FTA) .. 42

5.1.6.1 Extended: TSF- and User-initiated Locked State (FTA_SSL_EXT.1) ... 42

5.1.6.2 Extended: Wireless Network Access (FTA_WSE_EXT.1) ... 43

5.1.6.3 Default TOE Access Banners (FTA_TAB.1)... 43

5.1.7 TRUSTED PATH/CHANNELS (FTP) .. 43

5.1.7.1 Extended: Trusted Channel Communication (FTP_ITC_EXT.1) ... 43

5.2 TOE SECURITY ASSURANCE REQUIREMENTS .. 43

5.2.1 CC PART 3 ASSURANCE REQUIREMENTS .. 43

5.2.1.1 Timely Security Updates (ALC_TSU_EXT.1) ... 44

5.2.2 MOBILE DEVICE FUNDAMENTALS PP ASSURANCE ACTIVITIES .. 45

5.2.2.1 Cryptographic Support .. 45

5.2.2.2 User Data Protection ... 68

5.2.2.3 Identification and Authentication ... 70

5.2.2.4 Security Management ... 75

5.2.2.5 Protection of the TSF .. 80

5.2.2.6 TOE Access .. 85

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 6 of 156

5.2.2.7 Trusted Path/Channels ... 86

6 TOE SUMMARY SPECIFICATION (TSS) ... 88

6.1 PRODUCT ARCHITECTURE .. 88

6.2 TOE SECURITY FUNCTIONS .. 88

6.2.1 CRYPTOGRAPHIC SUPPORT .. 88

6.2.1.1 Cryptographic Algorithms and Operations ... 88

6.2.1.2 Programming Interfaces ... 92

6.2.1.3 Trusted Platform Module .. 92

6.2.1.4 Encrypting the Device with BitLocker ... 93

6.2.1.5 Key Storage ... 94

6.2.1.6 Protecting Data with DPAPI .. 95

6.2.1.7 Networking .. 95

6.2.1.8 Network Protocols .. 96

6.2.1.9 SFR Mapping ... 97

6.2.2 USER DATA PROTECTION .. 98

6.2.2.1 Restricting Access to System Services ... 98

6.2.2.2 Data at Rest Protection ... 102

6.2.2.3 Protecting Sensitive User Data ... 102

6.2.2.4 Certificate Storage .. 103

6.2.2.5 VPN Client ... 103

6.2.2.6 SFR Mapping ... 103

6.2.3 IDENTIFICATION AND AUTHENTICATION ... 104

6.2.3.1 Protecting User Data ... 104

6.2.3.2 X.509 Certificate Validation .. 104

6.2.3.3 SFR Mapping ... 105

6.2.4 SECURITY MANAGEMENT .. 106

6.2.4.1 SFR Mapping ... 108

6.2.5 PROTECTION OF THE TSF .. 109

6.2.5.1 Separation and Domain Isolation.. 109

6.2.5.2 Protection from Implementation Weaknesses ... 110

6.2.5.3 Time Service .. 111

6.2.5.4 Self-Tests ... 112

6.2.5.5 Windows Code Integrity ... 113

6.2.5.6 Windows and Application Updates ... 114

6.2.5.7 SFR Mapping ... 115

6.2.6 TOE ACCESS ... 116

6.2.6.1 Windows 8.1 ... 116

6.2.6.2 Windows Phone .. 117

6.2.6.3 SFR Mapping ... 117

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 7 of 156

6.2.7 TRUSTED PATH / CHANNELS .. 117

7 PROTECTION PROFILE CONFORMANCE CLAIM .. 119

7.1 RATIONALE FOR CONFORMANCE TO PROTECTION PROFILE... 119

8 RATIONALE FOR MODIFICATIONS TO THE SECURITY REQUIREMENTS 120

8.1 FUNCTIONAL REQUIREMENTS ... 120

8.2 SECURITY ASSURANCE REQUIREMENTS ... 122

8.3 RATIONALE FOR THE TOE SUMMARY SPECIFICATION .. 122

9 APPENDIX A: LIST OF ABBREVIATIONS ... 125

10 APPENDIX B: INTERFACES .. 130

11 APPENDIX C: ANALYSIS OF SPECIAL PUBLICATION 800-56A AND 800-56B 132

11.1 SPECIAL PUBLICATION 800-56A ... 132

11.1.1 NIST SP 800-56A SECTIONS .. 132

11.1.1.1 Sections 1 – 3 .. 132

11.1.1.2 Section 4 Key Establishment Schemes Overview .. 132

11.1.1.3 Section 5 Cryptographic Elements .. 132

11.1.1.4 Section 6 Key Agreement .. 141

11.1.1.5 Section 7 DLC-Based Key Transport .. 145

11.1.1.6 Section 8 Key Confirmation ... 145

11.1.1.7 Section 9 Key Recovery ... 145

11.1.1.8 Section 10 Implementation Validation ... 145

11.1.1.9 Appendices A, D, and E (Informative) ... 145

11.1.1.10 Appendix B: Rationale for Including Identifiers in the KDF Input ... 145

11.1.1.11 Appendix C: Data Conversions (Normative) ... 146

11.1.2 EXCEPTIONS .. 146

11.1.2.1 TOE-Specific Extensions .. 146

11.1.2.2 Additional Processing .. 146

11.1.2.3 Alternative Implementations .. 146

11.2 SPECIAL PUBLICATION 800-56B ... 146

11.2.1 NIST SP 800-56B SECTIONS .. 146

11.2.1.1 Sections 1 – 3 .. 146

11.2.1.2 Section 4 Key Establishment Schemes Overview .. 147

11.2.1.3 Section 5 Cryptographic Elements .. 147

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 8 of 156

11.2.1.4 Section 6 RSA Key Pairs ... 149

11.2.1.5 Section 7 IFC Primitives and Operations ... 152

11.2.1.6 Section 8 Key Agreement Schemes ... 153

11.2.1.7 Section 9 IFC based Key Transport Schemes ... 154

11.2.1.8 Section 10 Key Recovery ... 154

11.2.1.9 Section 11 Implementation Validation ... 154

11.2.1.10 Appendix A: Summary of Differences between this Recommendation and ANS X9.44

(Informative) ... 155

11.2.1.11 Appendix B: Data Conversions (Normative) ... 155

11.2.1.12 Appendix C: Prime Factor Recovery (Normative) ... 155

11.2.1.13 Appendix D: References (Informative) .. 155

12 APPENDIX D: TOE BINARY LIST ... 156

LIST OF TABLES

Table 3-1 MDF PP Threats Addressed by Windows 8.1 and Windows Phone .. 19

Table 3-2 Organizational Security Policies .. 20

Table 3-3 Secure Usage Assumptions ... 20

Table 4-1 Security Objectives for the TOE .. 22

Table 4-2 Security Objectives for the Operational Environment ... 22

Table 5-1 TOE Security Functional Requirements .. 24

Table 5-2 TOE Security Assurance Requirements ... 43

Table 6-1 HMAC Characteristics.. 90

Table 6-2 Cryptographic Algorithm Standards and Evaluation Methods ... 90

Table 6-3 Keys Used for IPsec, TLS, and Wi-Fi... 91

Table 6-4 TLS RFCs Implemented by Windows ... 96

Table 6-5 General Use Capabilities ... 99

Table 6-6 Device Capabilities .. 100

Table 6-7 Special Use Capabilities ... 101

Table 6-8 Mobile Device Management Capabilities ... 106

Table 6-9 Supporting Hardware .. 110

Table 8-1 Rationale for Operations ... 120

Table 8-2 Requirement to Security Function Correspondence .. 122

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 9 of 156

1 Security Target Introduction
This section presents the following information required for a Common Criteria (CC) evaluation:

 Identifies the Security Target (ST) and the Target of Evaluation (TOE);

 Specifies the security target conventions and conformance claims; and,

 Describes the organization of the security target.

1.1 Security Target, TOE, and Common Criteria (CC) Identification
ST Title: Microsoft Windows 8.1and Windows Phone 8.1 Security Target

ST Version: version 1.0, August 21, 2015

TOE Software Identification: The following Windows Operating Systems (OS):

 Microsoft Windows 8.1 Pro Edition (64-bit version)

 Microsoft Windows Phone 8.1 GDR2

The following security updates and patches must be applied to the above Windows 8.1 products:

 All critical updates as of April 30, 2015

The following security updates must be applied to the above Windows Phone 8.1 products:

 All critical updates as of April 30, 2015

TOE Hardware Identification: The following hardware platforms and components are included in the

evaluated configuration:

 Microsoft Surface 3, Windows 8.1 Pro, 64-bit, Intel Atom Z8700, Marvell 8897 Wi-Fi a/b/g/n

adapter, Bluetooth 4.0, Bluetooth LE, Intel TPM 2.0

 Microsoft Lumia 635, Windows Phone 8.1, Qualcomm Snapdragon 400, GSM, HSPA, LTE,

Qualcomm WCN3620 Wi-Fi b/g/n adapter, Qualcomm TPM 2.0

 Microsoft Lumia 830, Windows Phone 8.1, Qualcomm Snapdragon 400, GSM, HSPA, LTE,

Qualcomm WCN3620 Wi-Fi b/g/n adapter, Qualcomm TPM 2.0

All devices include IEEE 802.11 Wi-Fi and Bluetooth 4.0.

TOE Guidance Identification: The following administrator, user, and configuration guides were evaluated

as part of the TOE:

 Common Criteria Supplemental Admin Guidance along with all the documents referenced

therein.

Evaluation Assurance: As specified in section 5.2.1 and specific Assurance Activities associated with the

security functional requirements from section 5.2.2.

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 10 of 156

CC Identification: CC for Information Technology (IT) Security Evaluation, Version 3.1, Revision 4,

September 2012.

1.2 CC Conformance Claims
This TOE and ST are consistent with the following specifications:

 Common Criteria for Information Technology Security Evaluation Part 2: Security functional

requirements, Version 3.1, Revision 4, September 2012, extended (Part 2 extended)

 Common Criteria for Information Technology Security Evaluation Part 3: Security assurance

requirements Version 3.1, Revision 4, September 2012, extended with ALC_TSU_EXT.1

 Protection Profile for Mobile Device Fundamentals, Version 1.1, February 12, 2014 (MDF PP)

 CC Part 3 assurance requirements specified in Section 5.2.1 and Evaluation Assurance Activities

specified in section 5.2.2

1.3 Conventions, Terminology, Acronyms
This section specifies the formatting information used in the security target.

1.3.1 Conventions

The following conventions have been applied in this document:

 Security Functional Requirements (SFRs): Part 2 of the CC defines the approved set of operations

that may be applied to functional requirements: iteration, assignment, selection, and

refinement.

o Iteration: allows a component to be used more than once with varying operations.

o Assignment: allows the specification of an identified parameter.

o Selection: allows the specification of one or more elements from a list.

o Refinement: allows the addition of details.

The conventions for the assignment, selection, refinement, and iteration operations are

described in Section 5.

 Other sections of the security target use a bold font to highlight text of special interest, such as

captions.

1.3.2 Terminology

The following terminology is used in the security target:

Term Definition

Access Interaction between an entity and an object that results in the flow or
modification of data.

Access control Security service that controls the use of resources1 and the disclosure and
modification of data2.

1
 Hardware and software

2
 Stored or communicated

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 11 of 156

Accountability Tracing each activity in an IT system to the entity responsible for the
activity.

Active Directory Active Directory manages enterprise identities, credentials, information
protection, system and application settings through AD Domain Services,
Federation Services, Certificate Services and Lightweight Directory
Services.

Administrator An authorized user who has been specifically granted the authority to
manage some portion or the entire TOE and thus whose actions may affect
the TOE Security Policy (TSP). Administrators may possess special
privileges that provide capabilities to override portions of the TSP.

Assurance A measure of confidence that the security features of an IT system are
sufficient to enforce the IT system’s security policy.

Attack An intentional act attempting to violate the security policy of an IT system.

Authentication A security measure that verifies a claimed identity.

Authentication data The information used to verify a claimed identity.

Authorization Permission, granted by an entity authorized to do so, to perform functions
and access data.

Authorized user An authenticated user who may, in accordance with the TOE Security
Policy, perform an operation.

Availability Timely3, reliable access to IT resources.

Compromise Violation of a security policy.

Confidentiality A security policy pertaining to disclosure of data.

Critical cryptographic
security parameters

Security-related information appearing in plaintext or otherwise
unprotected form and whose disclosure or modification can compromise
the security of a cryptographic module or the security of the information
protected by the module.

Cryptographic boundary An explicitly defined contiguous perimeter that establishes the physical
bounds (for hardware) or logical bounds (for software) of a cryptographic
module.

Cryptographic key (key) A parameter used in conjunction with a cryptographic algorithm that
determines:

 the transformation of plaintext data into ciphertext data

 the transformation of ciphertext data into plaintext data

 a digital signature computed from data

 the verification of a digital signature computed from data

 a data authentication code computed from data

Cryptographic module The set of hardware, software, and/or firmware that implements approved
security functions, including cryptographic algorithms and key generation,
which is contained within the cryptographic boundary.

Cryptographic module
security policy

A precise specification of the security rules under which a cryptographic
module must operate.

Defense-in-depth A security design strategy whereby layers of protection are utilized to
establish an adequate security posture for an IT system.

Discretionary Access
Control (DAC)

A means of restricting access to objects based on the identity of subjects
and groups to which the objects belong. The controls are discretionary

3
 According to a defined metric

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 12 of 156

meaning that a subject with a certain access permission is capable of
passing that permission (perhaps indirectly) on to any other subject.

Edition A distinct variation of a Windows OS version. Examples of editions are
Windows Server 2012 [Standard] and Windows Server 2012 Datacenter.

Enclave A collection of entities under the control of a single authority and having a
homogeneous security policy. They may be logical, or based on physical
location and proximity.

Entity A subject, object, user or external IT device.

General-Purpose
Operating System

A general-purpose operating system is designed to meet a variety of goals,
including protection between users and applications, fast response time
for interactive applications, high throughput for server applications, and
high overall resource utilization.

Identity A means of uniquely identifying an authorized user of the TOE.

Integrated Windows
authentication

An authentication protocol formerly known as NTLM or Windows NT
Challenge/Response.

Named object An object that exhibits all of the following characteristics:

 The object may be used to transfer information between subjects
of differing user identities within the TOE Security Function (TSF).

 Subjects in the TOE must be able to request a specific instance of
the object.

 The name used to refer to a specific instance of the object must
exist in a context that potentially allows subjects with different
user identities to request the same instance of the object.

Object An entity under the control of the TOE that contains or receives
information and upon which subjects perform operations.

Operating environment The total environment in which a TOE operates. It includes the physical
facility and any physical, procedural, administrative and personnel
controls.

Persistent storage All types of data storage media that maintain data across system boots
(e.g., hard disk, removable media).

Public object An object for which the TSF unconditionally permits all entities “read”
access under the Discretionary Access Control SFP. Only the TSF or
authorized administrators may create, delete, or modify the public objects.

Resource A fundamental element in an IT system (e.g., processing time, disk space,
and memory) that may be used to create the abstractions of subjects and
objects.

SChannel A security package (SSP) that provides network authentication between
clients and servers.

Secure State Condition in which all TOE security policies are enforced.

Security attributes TSF data associated with subjects, objects and users that is used for the
enforcement of the TSP.

Security-enforcing A term used to indicate that the entity (e.g., module, interface, subsystem)
is related to the enforcement of the TOE security policies.

Security-supporting A term used to indicate that the entity (e.g., module, interface, subsystem)
is not security-enforcing; however, the entity’s implementation must still
preserve the security of the TSF.

Security context The security attributes or rules that are currently in effect. For SSPI, a

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 13 of 156

security context is an opaque data structure that contains security data
relevant to a connection, such as a session key or an indication of the
duration of the session.

Security package The software implementation of a security protocol. Security packages are
contained in security support provider libraries or security support
provider/authentication package libraries.

Security principal An entity recognized by the security system. Principals can include human
users as well as autonomous processes.

Security Support
Provider (SSP)

A dynamic-link library that implements the SSPI by making one or more
security packages available to applications. Each security package provides
mappings between an application's SSPI function calls and an actual
security model's functions. Security packages support security protocols
such as Kerberos authentication and Integrated Windows Authentication.

Security Support
Provider Interface (SSPI)

A common interface between transport-level applications. SSPI allows a
transport application to call one of several security providers to obtain an
authenticated connection. These calls do not require extensive knowledge
of the security protocol's details.

Security Target (ST) A set of security requirements and specifications to be used as the basis for
evaluation of an identified TOE.

Subject An active entity within the TOE Scope of Control (TSC) that causes
operations to be performed. Subjects can come in two forms: trusted and
untrusted. Trusted subjects are exempt from part or all of the TOE security
policies. Untrusted subjects are bound by all TOE security policies.

Target of Evaluation
(TOE)

An IT product or system and its associated administrator and user guidance
documentation that is the subject of an evaluation.

Threat Capabilities, intentions and attack methods of adversaries, or any
circumstance or event, with the potential to violate the TOE security
policy.

Unauthorized individual A type of threat agent in which individuals who have not been granted
access to the TOE attempt to gain access to information or functions
provided by the TOE.

Unauthorized user A type of threat agent in which individuals who are registered and have
been explicitly granted access to the TOE may attempt to access
information or functions that they are not permitted to access.

Universal Unique
Identifier (UUID)

UUID is an identifier that is unique across both space and time, with
respect to the space of all UUIDs. A UUID can be used for multiple
purposes, from tagging objects with an extremely short lifetime, to reliably
identifying very persistent objects across a network.

User Any person who interacts with the TOE.

User Principal Name
(UPN)

An identifier used by Microsoft Active Directory that provides a user name
and the Internet domain with which that username is associated in an e-
mail address format. The format is [AD username]@[associated domain];
an example would be john.smith@microsoft.com.

Uniform Resource
Locator (URL)

The address that is used to locate a Web site. URLs are text strings that
must conform to the guidelines in RFC 2396.

Version A Version refers to a release level of the Windows operating system.
Windows 7 and Windows 8 are different versions.

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 14 of 156

Vulnerability A weakness that can be exploited to violate the TOE security policy.

1.3.3 Acronyms

The acronyms used in this security target are specified in Appendix A: List of Abbreviations

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 15 of 156

Appendix A: List of Abbreviations.

1.4 ST Overview and Organization
The Windows 8.1 and Windows Phone TOE provides the following security services:

 Cryptographic support

 User data protection

 Identification and Authentication (I&A)

 Protection of the TOE Security Functions (TSF)

 TOE access/session control

 Trusted path/channel

 Security management

This security target contains the following additional sections:

 TOE Description (Section 2): Provides an overview of the TSF and boundary.

 Security Problem Definition (Section 3): Describes the threats, organizational security policies

and assumptions that pertain to the TOE.

 Security Objectives (Section 4): Identifies the security objectives that are satisfied by the TOE

and the TOE operational environment.

 Security Requirements (Section 5): Presents the security functional and assurance requirements

met by the TOE.

 TOE Summary Specification (TSS) (Section 6): Describes the security functions provided by the

TOE to satisfy the security requirements and objectives.

 Protection Profile Conformance Claim (Section 7): Presents the rationale concerning compliance

of the ST with the Protection Profile for Mobile Device Fundamentals.

 Rationale for Modifications to the Security Requirements (Section 8): Presents the rationale for

the security objectives, requirements, and TOE Summary Specification as to their consistency,

completeness and suitability.

2 TOE Description
The TOE includes the Windows 8.1 operating system, the Microsoft Windows Phone operating system,

supporting hardware, and those applications necessary to manage, support and configure the operating

system.

2.1 Product Types
Windows 8.1, and Windows Phone 8.1 are preemptive multitasking, multiprocessor, and multi-user

operating systems. In general, operating systems provide users with a convenient interface to manage

underlying hardware. They control the allocation and manage computing resources such as processors,

memory, and Input/Output (I/O) devices. Windows 8.1and Windows Phone 8.1, collectively referred to

as Windows, expand these basic operating system capabilities to controlling the allocation and

managing higher level IT resources such as security principals (user or machine accounts), files, printing

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 16 of 156

objects, services, window station, desktops, cryptographic keys, network ports traffic, directory objects,

and web content. Multi-user operating systems such as Windows keep track of which user is using which

resource, grant resource requests, account for resource usage, and mediate conflicting requests from

different programs and users.

2.2 Product Description
The TOE includes two product variants of Windows 8.1and Windows Phone:

 Windows 8.1 Pro

 Windows Phone 8.1

Windows 8.1 is suited for business desktops, notebook, and convertible computers. It is the workstation

product and while it can be used by itself, it is also designed to serve as a client within Windows

domains.

Windows Phone 8.1 is based on the same core operating system as Windows 8.1 and provides a

simplified user interface that makes Windows Phone a communications hub for voice, text, and web

access.

In terms of security, Windows 8.1 and Phone 8.1 share the same security characteristics.

2.3 Security Environment and TOE Boundary
The TOE includes both physical and logical boundaries. Its operational environment is that of a

networked environment with IEEE 802.11 (Wi-Fi), mobile broadband networks (3G/4G and LTE) and

Bluetooth networks.

2.3.1 Logical Boundaries

The logical boundary of the TOE includes:

 The Boot Manager, which is invoked by the computer’s bootstrapping code.

 The Windows Loader which loads the operating system into the computer’s memory.

 Windows OS Resume which reloads an image of the executing operating system from a

hibernation file as part of resuming from a hibernated state.

 The Windows Kernel which contains device drivers for the Windows NT File System, full volume

encryption, the crash dump filter, and the kernel-mode cryptographic library.

 The IPv4 / IPv6 network stack in the kernel.

 The IPsec module in user-mode.

 The IKE and AuthIP Keying Modules service which hosts the IKE and Authenticated Internet

Protocol (AuthIP) keying modules. These keying modules are used for authentication and key

exchange in Internet Protocol security (IPsec).4

 The Remote Access Service device driver in the kernel, which is used primarily for ad hoc or

user-defined VPN connections; known as the “RAS IPsec VPN” or “RAS VPN”.

4
 AuthIP key exchange was not examined in the Common Criteria portion of this evaluation.

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 17 of 156

 The IPsec Policy Agent service which enforces IPsec policies.

 Windows Explorer for Windows 8.1 which can be used to manage the OS and check the

integrity of Windows files and updates.

 The Windows Phone shell for Windows Phone 8.1 which can be used to manage the device.

 The Windows Trusted Installer which installs updates to the Windows operating system.

 The Key Isolation Service which protects secret and private keys.

 The App Container which is the execution environment for the Windows Store Applications

which are the only applications covered by this evaluation.

2.3.2 Physical Boundaries

Physically, each TOE tablet or phone consists of an ARMv7 Thumb-2or x64 computer architecture. The

TOE executes on processors from Intel (x64) or Qualcomm (ARM). Refer to section 1.1 for the specific

list of hardware included in the evaluation.

A set of devices may be attached as part of the TOE:

 Display Monitors

 Fixed Disk Drives (including disk drives and solid state drives)

 Removable Disk Drives (including USB storage)

 Network Adaptor

 Keyboard

 Mouse

 Printer

 Audio Adaptor

 CD-ROM Drive

 Smart Card Reader

 Trusted Platform Module (TPM) version 2.0

While this list of devices is larger than is needed to evaluate the requirements in the Mobile Device

Fundamentals protection profile, it is the same set of devices as the General Purpose Operating System

Protection Profile evaluation for Windows 8. By using the same set of devices for both evaluations,

consumers can gain assurance by using both core OS capabilities and Mobile Device Fundamentals in

combination.

2.4 TOE Security Services
This section summarizes the security services provided by the TOE:

 Cryptographic Support: Windows provides FIPS-140-2 validated cryptographic functions that

support encryption/decryption, cryptographic signatures, cryptographic hashing, cryptographic

key agreement, and random number generation. The TOE additionally provides support for

public keys, credential management and certificate validation functions and provides support

for the National Security Agency’s Suite B cryptographic algorithms. Windows also provides

extensive auditing support of cryptographic operations, the ability to replace cryptographic

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 18 of 156

functions and random number generators with alternative implementations,5 and a key isolation

service designed to limit the potential exposure of secret and private keys. In addition to using

cryptography for its own security functions, Windows offers access to the cryptographic support

functions for user-mode and kernel-mode programs. Public key certificates generated and used

by Windows authenticate users and machines as well as protect both user and system data in

transit.

o Software-based disk encryption: Windows implements BitLocker to provide encrypted

data storage for fixed and removable volumes and protects the disk volume’s encryption

key with one or more intermediate keys and authorization factor

o IPsec: Windows implements IPsec to provide protected, authenticated, confidential, and

tamper-proof networking between two peer computers.

 User Data Protection: In the context of this evaluation Windows protects user data at rest and

provides secure storage of X.509v3 certificates.

 Identification and Authentication: In the context of this evaluation, Windows provides the

ability to use, store, and protect X.509 certificates that are used for IPsec and authenticates the

user to their mobile device.

 Protection of the TOE Security Functions: Windows provides a number of features to ensure

the protection of TOE security functions. Windows protects against unauthorized data

disclosure and modification by using a suite of Internet standard protocols including IPsec, IKE,

and ISAKMP. Windows ensures process isolation security for all processes through private

virtual address spaces, execution context, and security context. The Windows data structures

defining process address space, execution context, memory protection, and security context are

stored in protected kernel-mode memory. Windows includes self-testing features that ensure

the integrity of executable program images and its cryptographic functions. Finally, Windows

provides a trusted update mechanism to update Windows binaries itself.

 Session Locking: Windows provides the ability for a user to lock their session either immediately

or after a defined interval. Windows constantly monitors the mouse, keyboard, and touch

display for activity and locks the computer after a set period of inactivity. Windows allows an

authorized administrator to configure the system to display a logon banner before the logon

dialog.

 Trusted Path for Communications: Windows uses the IPsec suite of protocols to provide a

Virtual Private Network Connection (VPN) between itself, acting as a VPN client, and a VPN

gateway in addition to providing protected communications for HTTPS and TLS.

 Security Management: Windows includes several functions to manage security policies. Policy

management is controlled through a combination of access control, membership in

administrator groups, and privileges.

5
 These options were not included in the Windows Mobile Device Common Criteria evaluation.

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 19 of 156

3 Security Problem Definition
The security problem definition consists of the threats to security, organizational security policies, and

usage assumptions as they relate to Windows 8.1, and Windows Phone. The assumptions, threats, and

policies are copied from the Protection Profile for Mobile Device Fundamentals (“MDF PP”).

3.1 Threats to Security
Table 3-1 presents known or presumed threats to protected resources that are addressed by Windows

8.1 and Windows Phone based on conformance to the protection profile.

Table 3-1 MDF PP Threats Addressed by Windows 8.1 and Windows Phone

Threat Description

T.EAVESDROP Network Eavesdropping: An attacker is positioned on a wireless
communications channel or elsewhere on the network
infrastructure. Attackers may monitor and gain access to data
exchanged between the Mobile Device and other endpoints.

T.NETWORK Network Attack: An attacker is positioned on a wireless
communications channel or elsewhere on the network
infrastructure. Attackers may initiate communications with the
Mobile Device or alter communications between the Mobile Device
and other endpoints in order to compromise the Mobile Device.
These attacks include malicious software update of any applications
or system software on the device. These attacks also include
malicious web pages or email attachments which are usually
delivered to devices over the network.

T.PHYSICAL Physical Access: The loss or theft of the Mobile Device may give rise
to loss of confidentiality of user data including credentials. These
physical access threats may involve attacks which attempt to access
the device through external hardware ports, through its user
interface, and also through direct and possibly destructive access to
its storage media. The goal of such attacks is to access data from a
lost or stolen device which is not expected to return to its user.

Note: Defending against device re-use after physical compromise is
out of scope for this security target.

T.FLAWAPP Malicious or Flawed Application: Applications loaded onto the
Mobile Device may include malicious or exploitable code. This code
could be included intentionally by its developer or unknowingly by
the developer, perhaps as part of a software library. Malicious apps
may attempt to exfiltrate data to which they have access. They may
also conduct attacks against the platform‘s system software which
will provide them with additional privileges and the ability to
conduct further malicious activities. Malicious applications may be
able to control the device's sensors (GPS, camera, microphone) to

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 20 of 156

gather intelligence about the user's surroundings even when those
activities do not involve data resident or transmitted from the
device. Flawed applications may give an attacker access to perform
network-based or physical attacks that otherwise would have been
prevented.

T.PERSISTENT Persistent Access: Persistent access to a device by an attacker
implies that the device has lost integrity and cannot regain it. The
device has likely lost this integrity due to some other threat vector,
yet the continued access by an attacker constitutes an on-going
threat in itself. In this case the device and its data may be controlled
by an adversary at least as well as by its legitimate owner.

3.2 Organizational Security Policies
An organizational security policy is a set of rules or procedures imposed by an organization upon its

operations to protect its sensitive data and IT assets. Table 3-2 describes organizational security policies

that are addressed by Windows 8.1, and Windows Phone which are necessary for conformance to the

MDF PP.

Table 3-2 Organizational Security Policies

Security Policy Description

[None] There are no Organizational Security Policies for the Mobile Device
protection profile.

3.3 Secure Usage Assumptions
Table 3-3 describes the core security aspects of the environment in which Windows 8.1 and Windows

Phone is intended to be used. It includes information about the physical, personnel, procedural, and

connectivity aspects of the environment.

The following specific conditions are assumed to exist in an environment where the TOE is employed in

order to conform to the MDF PP:

Table 3-3 Secure Usage Assumptions

Assumption Description

A.CONFIG It is assumed that the TOE‘s security functions are configured
correctly in a manner to ensure that the TOE security policies will be
enforced on all applicable network traffic flowing among the
attached networks.

A.NOTIFY It is assumed that the mobile user will immediately notify the
administrator if the Mobile Device is lost or stolen.

A.PRECAUTION It is assumed that the mobile user exercises precautions to reduce
the risk of loss or theft of the Mobile Device.

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 21 of 156

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 22 of 156

4 Security Objectives
This section defines the security objectives of Windows 8.1 and Windows Phone and its supporting

environment. Security objectives, categorized as either TOE security objectives or objectives by the

supporting environment, reflect the stated intent to counter identified threats, comply with any

organizational security policies identified, or address identified assumptions. All of the identified threats,

organizational policies, and assumptions are addressed under one of the categories below.

4.1 TOE Security Objectives
Table 4-1 describes the security objectives for Windows 8.1 and Windows Phone which are needed to

comply with the MDF PP.

Table 4-1 Security Objectives for the TOE

Security Objective Source

O.COMMS The TOE will provide the capability to communicate using one (or
more) standard protocols as a means to maintain the confidentiality
of data that are transmitted outside of the TOE.

O.STORAGE The TOE will provide the capability to encrypt all user and enterprise
data and authentication keys to ensure the confidentiality of data
that it stores.

O.CONFIG The TOE will provide the capability to configure and apply security
policies. This ensures the Mobile Device can protect user and
enterprise data that it may store or process.

O.AUTH The TOE will provide the capability to authenticate the user and
endpoints of a trusted path to ensure they are communicating with
an authorized entity with appropriate privileges.

O.INTEGRITY The TOE will provide the capability to perform self-tests to ensure
the integrity of critical functionality, software/firmware and data has
been maintained. The TOE will also provide a means to verify the
integrity of downloaded updates.

4.2 Security Objectives for the Operational Environment
The TOE is assumed to be complete and self-contained and, as such, is not dependent upon any other

products to perform properly. However, certain objectives with respect to the general operating

environment must be met. Table 4-2 describes the security objectives for the operational environment

as specified in the MDF PP.

Table 4-2 Security Objectives for the Operational Environment

Environment Objective Description

OE.CONFIG TOE administrators will configure the Mobile Device security
functions correctly to create the intended security policy.

OE.NOTIFY The Mobile User will immediately notify the administrator if the

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 23 of 156

Mobile Device is lost or stolen.

OE.PRECAUTION The Mobile User exercises precautions to reduce the risk of loss or
theft of the Mobile Device.

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 24 of 156

5 Security Requirements
The section defines the Security Functional Requirements (SFRs) and Security Assurance Requirements

(SARs) for the TOE. The requirements in this section have been drawn from the Protection Profile for

Mobile Device Fundamentals, Version 1.1, February 12, 2014, the Common Criteria.

Conventions:

Where requirements are drawn from the MDF PP, the requirements are copied verbatim, except for

some changes to required identifiers to match the iteration convention of this document, from that

protection profile and only operations performed in this security target are identified.

The extended requirements, extended component definitions and extended requirement conventions in

this security target are drawn from the protection profile; the security target reuses the conventions

from the protection profile which include the use of the word “Extended” and the “_EXT” identifier to

denote extended functional requirements. The security target assumes that the protection profile

correctly defines the extended components and so they are not reproduced in the security target.

Where applicable the following conventions are used to identify operations:

 Iteration: Iterated requirements (components and elements) are identified with letter following

the base component identifier. For example, iterations of FMT_MOF.1 are identified in a

manner similar to FMT_MOF.1(Audit) (for the component) and FCS_COP.1.1(Audit) (for the

elements).

 Assignment: Assignments are identified in brackets and bold (e.g., [assigned value]).

 Selection: Selections are identified in brackets, bold, and italics (e.g., [selected value]).

o Assignments within selections are identified using the previous conventions, except that

the assigned value would also be italicized and extra brackets would occur (e.g.,

[selected value [assigned value]]).

 Refinement: Refinements are identified using bold text (e.g., added text) for additions and

strike-through text (e.g., deleted text) for deletions.

5.1 TOE Security Functional Requirements
This section specifies the SFRs for the TOE.

Table 5-1 TOE Security Functional Requirements

Requirement Class Requirement Component

Cryptographic
Support (FCS)

Cryptographic Key Generation for Key Establishment (FCS_CKM.1(ASYM KA))

Cryptographic Key Generation for Authentication (FCS_CKM.1(ASYM AU))

Cryptographic Key Generation for WLAN (FCS_CKM.1(WLAN))

Cryptographic Key Distribution for WLAN (FCS_CKM.2)

Extended: Cryptographic Key Support for Root Encryption Key
(FCS_CKM_EXT.1)

Extended: Cryptographic Key Random Generation for Data Encryption Keys
(FCS_CKM_EXT.2(128))

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 25 of 156

Extended: Cryptographic Key Random Generation for Data Encryption Keys
(FCS_CKM_EXT.2(256))

Extended: Cryptographic Key Generation for Key Encryption Keys
(FCS_CKM_EXT.3)

Extended: Cryptographic Key Destruction (FCS_CKM_EXT.4)

Extended: TSF Wipe (FCS_CKM_EXT.5)

Extended: Cryptographic Salt Generation (FCS_CKM_EXT.6)

Cryptographic Operation for Data Encryption/Decryption (FCS_COP.1(SYM))

Cryptographic Operation for Hashing (FCS_COP.1(HASH))

Cryptographic Operation for Signature Algorithms (FCS_COP.1(SIGN))

Cryptographic Operation for Keyed Hash Algorithms (FCS_COP.1(HMAC))

Cryptographic Operation for Password Based Key Derivation
(FCS_COP.1(PBKD))

Extended: Initialization Vector Generation (FCS_IV_EXT.1)

Extended: Random Bit Generation (FCS_RBG_EXT.1)

Extended: Cryptographic Algorithm Services (FCS_SRV_EXT.1)

Extended: Cryptographic Key Storage (FCS_STG_EXT.1)

Extended: Encrypted Cryptographic Key Storage (FCS_STG_EXT.2)

Extended: Integrity of Encrypted Key Storage (FCS_STG_EXT.3)

Extended: EAP TLS Protocol (FCS_TLS_EXT.1)

Extended: TLS Protocol (FCS_TLS_EXT.2)

Extended: HTTPS Protocol (FCS_HTTPS_EXT.1)

User Data Protection
(FDP)

Extended: Security Attribute Based Access Control (FDP_ACF_EXT.1)

Extended: Data at Rest Protection (FDP_DAR_EXT.1(128))

Extended: Data at Rest Protection (FDP_DAR_EXT.1(256))

Extended: Sensitive Data Encryption (FDP_DAR_EXT.2))

Extended: Certificate Data Storage (FDP_STG_EXT.1)

Identification &
Authentication (FIA)

Extended: Authorization Failure Handling (FIA_AFL_EXT.1)

Extended: Bluetooth Authentication (FIA_BLT_EXT.1)

Extended: PAE Authentication (FIA_PAE_EXT.1)

Extended: Password Management (FIA_PMG_EXT.1)

Extended: Authorization Throttling (FIA_TRT_EXT.1)

Protected Authorization Feedback (FIA_UAU.7)

Extended: Authentication for Cryptographic Operation (FIA_UAU_EXT.1)

Extended: Timing of Authentication (FIA_UAU_EXT.2)

Extended: Re-Authorizing (FIA_UAU_EXT.3)

Extended: Validation of Certificates (FIA_X509_EXT.1)

Extended: X.509 Certificate Authentication (FIA_X509_EXT.2)

Extended: Request Validation of Certificates (FIA_X509_EXT.3)

Security
Management (FMT)

Management of Security Functions Behavior by the User (FMT_MOF.1(USER))

Management of Security Functions Behavior by the Organization
(FMT_MOF.1(ORG))

Specifications of Management Functions (FMT_SMF.1)

Extended: Specification of Remediation Actions (FMT_SMF_EXT.1)

Protection of the TSF
(FPT)

Extended: Anti-Exploitation Services for Address Space Layout Randomization
(FPT_AEX_EXT.1)

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 26 of 156

Extended: Anti-Exploitation Services for Memory Page Permissions
(FPT_AEX_EXT.2)

Extended: Anti-Exploitation Services for Stack Overflow Protection
(FPT_AEX_EXT.3)

Extended: Domain Isolation (FPT_AEX_EXT.4)

Extended: Plaintext Key Storage (FPT_KST_EXT.1)

Extended: No Key Transmission (FPT_KST_EXT.2)

Extended: No Plaintext Key Transport (FPT_KST_EXT.3)

Extended: Self-Text Event Notification (FPT_NOT_EXT.1)

Reliable Time Stamps (FPT_STM.1)

Extended: TSF Cryptographic Functionality Testing (FPT_TST_EXT.1)

Extended: TSF Integrity Testing (FPT_TST_EXT.2)

Extended: Trusted Update: TSF Version Query (FPT_TUD_EXT.1)

Extended: Trusted Update Verification (FPT_TUD_EXT.2)

TOE Access (FTA) Extended: TSF- and User-initiated Locked State (FTA_SSL_EXT.1)

Extended: Wireless Network Access (FTA_WSE_EXT.1)

Default TOE Access Banners (FTA_TAB.1)

Trusted
Path/Channels (FTP)

Extended: Trusted Channel Communication (FTP_ITC_EXT.1)

5.1.1 Cryptographic Support (FCS)

The functional requirements described in this are only those portions of the cryptographic functions

implemented within Windows which are needed to meet the requirements of the Mobile Device

Fundamentals protection profile. The intent is to describe only a subset of the product rather than a

comprehensive review of Windows.

5.1.1.1 Cryptographic Key Generation for Key Establishment (FCS_CKM.1(ASYM KA))

Application Note: FCS_CKM.1(ASYM KA) corresponds to FCS_CKM.1(1) in the MDF protection profile.

FCS_CKM.1.1(ASYM
KA)

The TSF shall generate asymmetric cryptographic keys used for key
establishment in accordance with:

 NIST Special Publication 800-56B, ”Recommendation for Pair-Wise Key
Establishment Schemes Using Integer Factorization Cryptography” for
RSA-based key establishment schemes and

[

 NIST Special Publication 800-56A, “Recommendation for Pair-
Wise Key Establishment Schemes Using Discrete Logarithm
Cryptography” for finite field- based key establishment schemes;

 NIST Special Publication 800-56A, “Recommendation for Pair-
Wise Key Establishment Schemes Using Discrete Logarithm
Cryptography” for elliptic curve- based key establishment
schemes and implementing “NIST curves” P-256, P-384 and [P-
521] (as defined in FIPS PUB 186-4, “Digital Signature Standard”)

]
and specified cryptographic key sizes equivalent to, or greater than, a
symmetric key strength of 112 bits.

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 27 of 156

5.1.1.2 Cryptographic Key Generation for Authentication (FCS_CKM.1(ASYM AU))

Application Note: FCS_CKM.1(ASYM AU) corresponds to FCS_CKM.1(2) in the MDF protection profile.

FCS_CKM.1.1(ASYM
AU)

The TSF shall generate asymmetric cryptographic keys used for authentication
in accordance with a specified cryptographic key generation algorithm
[

 FIPS PUB 186-4, “Digital Signature Standard (DSS)”, Appendix B.3 for
RSA schemes;

 FIPS PUB 186-4, “Digital Signature Standard (DSS)”, Appendix B.4 for
ECDSA schemes and implementing “NIST curves” P-256, P-384 and [P-
521];

]
and specified cryptographic key sizes [equivalent to, or greater than, a
symmetric key strength of 112 bits].

5.1.1.3 Cryptographic Key Generation for WLAN (FCS_CKM.1(WLAN))

Application Note: FCS_CKM.1(WLAN) corresponds to FCS_CKM.1(3) in the MDF protection profile.

FCS_CKM.1.1(WLAN) The TSF shall generate symmetric cryptographic keys in accordance with a
specified cryptographic key generation algorithm [PRF-384] and specified
cryptographic key sizes [128 bits] using a Random Bit Generator as specified in
FCS_RBG_EXT.1 that meet the following: [IEEE 802.11-2012].

5.1.1.4 Cryptographic Key Distribution for WLAN (FCS_CKM.2)

FCS_CKM.2.1 The TSF shall decrypt Group Temporal Key (GTK) in accordance with a
specified cryptographic key distribution method [AES Key Wrap in an EAPOL-
Key frame] that meets the following: [NIST SP 800-38F, IEEE 802.11-2012 for
the packet format and timing considerations] and does not expose the
cryptographic keys.

5.1.1.5 Extended: Cryptographic Key Support for Root Encryption Key (FCS_CKM_EXT.1)

FCS_CKM_EXT.1.1 The TSF shall support a [hardware-isolated] REK with an [symmetric] key of
size [256 bits].

FCS_CKM_EXT.1. System software on the TSF shall be able only to request [NIST SP 800-108
key derivation] by the key and shall not be able to read, import, or export a
REK.

FCS_CKM_EXT.1.3 A REK shall be generated by a RBG in accordance with FCS_RBG_EXT.1.

5.1.1.6 Extended: Cryptographic Key Random Generation for Data Encryption Keys

(FCS_CKM_EXT.2(128))6

FCS_CKM_EXT.2.1(128) All DEKs shall be randomly generated with entropy corresponding to the
security strength of AES key sizes of [128] bits.

6
 This iteration of FCS_CKM_EXT.2 is for Windows Phone which always uses a 128 bit DEK.

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 28 of 156

5.1.1.7 Extended: Cryptographic Key Random Generation for Data Encryption Keys

(FCS_CKM_EXT.2(256))7

FCS_CKM_EXT.2.1(256) All DEKs shall be randomly generated with entropy corresponding to the
security strength of AES key sizes of [128, 256] bits.

5.1.1.8 Extended: Cryptographic Key Generation for Key Encryption Keys (FCS_CKM_EXT.3)

FCS_CKM_EXT.3.1 All KEKs shall be [256-bit] keys corresponding to at least the security strength
of the keys encrypted by the KEK.

FCS_CKM_EXT.3.2 The TSF shall generate all KEKs using one or more of the following methods:
a) derive the KEK from a Password Authentication Factor using PBKDF

and
[

b) generate the KEK using an RBG that meets this profile (as specified in
FCS_RBG_EXT.1)

c) generate the KEK using a key generation scheme that meets this
profile (as specified in FCS_CKM.1(1))8

d) Combine the KEK from other KEKs in a way that preserves the
effective entropy of each factor by [using an XOR operation,
concatenating the keys and use a KDF (as described in SP 800-108),
encrypting one key with another]

].

5.1.1.9 Extended: Cryptographic Key Destruction (FCS_CKM_EXT.4)

FCS_CKM_EXT.4.1 The TSF shall destroy cryptographic keys in accordance with the specified
cryptographic key destruction method
[

 by clearing the KEK encrypting the target key,

 in accordance with the following rules:
o For volatile EEPROM the destruction shall be executed by a

single direct overwrite consisting of a pseudo random
pattern using the TSF’s RBG (as specified in FCS_RBG_EXT.1),
followed a read-verify.

o For volatile flash memory the destruction shall be executed
by [a single direct overwrite consisting of zeros followed by a
read-verify, a block erase followed by a read-verify.]

].
FCS_CKM_EXT.4.2 The TSF shall destroy all plaintext keying material and cryptographic security

parameters when no longer needed.

5.1.1.10 Extended: TSF Wipe (FCS_CKM_EXT.5)

FCS_CKM_EXT.5.1 The TSF shall wipe all protected data by
[

 Cryptographically erasing the encrypted DEKs and/or the KEKs in
non-volatile memory by following the requirements in

7
 This iteration of FCS_CKM_EXT.2 is for Windows 8.1 which can use either a 128 bit DEK or a 256-bit DEK, the

administrative guidance restricts the DEK in the evaluated configuration to 256 bits.
8
 FCS_CKM.1(1) in the protection profile corresponds to FCS_CKM.1(ASYM KA).

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 29 of 156

FCS_CKM_EXT.4.1;
]

FCS_CKM_EXT.5.2 The TSF shall perform a power cycle on conclusion of the wipe procedure.

5.1.1.11 Extended: Cryptographic Salt Generation (FCS_CKM_EXT.6)

FCS_CKM_EXT.6.1 The TSF shall generate all salts using a RBG that meets [FCS_RBG_EXT.1].

5.1.1.12 Cryptographic Operation for Data Encryption/Decryption (FCS_COP.1(SYM))

Application Note: FCS_COP.1(SYM) corresponds to FCS_COP.1(1) in the MDF protection profile.

FCS_COP.1.1(SYM) The TSF shall perform [encryption/decryption] in accordance with a specified
cryptographic algorithm

 AES-CBC (as defined in NIST SP 800-38A) mode,

 AES-CCMP (as defined in FIPS PUB 197, NIST SP 800-38C and IEEE
802.11- 2012), and
[

 AES Key Wrap (KW) (as defined in NIST SP 800-38F), AES Key Wrap
with Padding (KWP) (as defined in NIST SP 800-38F), AES-GCM (as
defined in NIST SP 800- 38D), AES-CCM (as defined in NIST SP 800-
38C)]
and cryptographic key sizes 128-bit key sizes and [256-bit key sizes].

5.1.1.13 Cryptographic Operation for Hashing (FCS_COP.1(HASH))

Application Note: FCS_COP.1(HASH) corresponds to FCS_COP.1(2) in the MDF protection profile.

FCS_COP.1.1(HASH) The TSF shall perform [cryptographic hashing] in accordance with a specified
cryptographic algorithm SHA-1 and [SHA-256, SHA-384, SHA-512] and
message digest sizes 160 and [256, 384, 512 bits] that meet the following:
[FIPS Pub 180-4].

5.1.1.14 Cryptographic Operation for Signature Algorithms (FCS_COP.1(SIGN))

Application Note: FCS_COP.1(SIGN) corresponds to FCS_COP.1(3) in the MDF protection profile.

FCS_COP.1.1(SIGN) The TSF shall perform [cryptographic signature services (generation and
verification)] in accordance with a specified cryptographic algorithm

 FIPS PUB 186-4, “Digital Signature Standard (DSS)”,Section 4 for RSA
schemes
[

 FIPS PUB 186-4, “Digital Signature Standard (DSS)”, Section 5 for
ECDSA schemes and implementing “NIST curves” P-256, P-384 and [P-
521]
]
and cryptographic key sizes [equivalent to, or greater than, a
symmetric key strength of 112 bits].

5.1.1.15 Cryptographic Operation for Keyed Hash Algorithms (FCS_COP.1(HMAC))

Application Note: FCS_COP.1(HMAC) corresponds to FCS_COP.1(4) in the MDF protection profile.

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 30 of 156

FCS_COP.1.1(HMAC) The TSF shall perform [keyed-hash message authentication] in
accordance with a specified cryptographic algorithm HMAC-SHA-1 and
[HMAC-SHA-256, HMAC-SHA-384, HMAC-SHA-512] and cryptographic
key sizes [128, 256] and message digest sizes 160 and [256, 384, 512] bits
that meet the following: [FIPS Pub 198-1, "The Keyed-Hash Message
Authentication Code, and FIPS Pub 180-4, “Secure Hash Standard].

5.1.1.16 Cryptographic Operation for Password Based Key Derivation (FCS_COP.1(PBKD))

Application Note: FCS_COP.1(PBKD) corresponds to FCS_COP.1(5) in the MDF protection profile.

FCS_COP.1.1(PBKD) The TSF shall perform [Password-based Key Derivation Functions] in
accordance with a specified cryptographic algorithm [HMAC-[SHA-1,
SHA-256, SHA-384, SHA-512]] and output cryptographic key sizes [128,
256] that meet the following: [NIST SP 800-132].

5.1.1.17 Extended: Initialization Vector Generation (FCS_IV_EXT.1)

FCS_IV_EXT.1.1 The TSF shall generate IVs in accordance with Table 11: References and IV
Requirements for NIST-approved Cipher Modes. 9

5.1.1.18 Extended: Random Bit Generation (FCS_RBG_EXT.1)

FCS_RBG_EXT.1.1 The TSF shall perform all deterministic random bit generation services in
accordance with [NIST Special Publication 800-90A using [CTR_DRBG (AES),
Dual_EC_DRBG (any)]].

FCS_RBG_EXT.1.2 The deterministic RBG shall be seeded by an entropy source that accumulates
entropy from [a software-based noise source, TSF-hardware-based noise
source] with a minimum of [256 bits] of entropy at least equal to the greatest
security strength (according to NIST SP 800-57) of the keys and hashes that it
will generate.

FCS_RBG_EXT.1.3 The TSF shall be capable of providing output of the RBG to applications
running on the TSF that request random bits.

5.1.1.19 Extended: Cryptographic Algorithm Services (FCS_SRV_EXT.1)

FCS_SRV_EXT.1.1 The TSF shall provide a mechanism for [Windows Store applications] to
request the TSF to perform the following cryptographic operations:

 FCS_COP.1(SYM 1)

 FCS_COP.1(SIGN 3)

 FCS_COP.1(HASH 2)

 FCS_COP.1(HMAC 4)

 FCS_COP.1(PBKD 5)

 FCS_CKM.1(ASYM KA 1)

 [FCS_CKM.1(ASYM AU 2)].

5.1.1.20 Extended: Cryptographic Key Storage (FCS_STG_EXT.1)

FCS_STG_EXT.1.1 The TSF shall provide secure key storage for asymmetric private keys and
[symmetric keys, persistent secrets].

FCS_STG_EXT.1.2 The TSF shall be capable of importing keys/secrets into the secure key storage

9
 This refers to Table 11 of the MDF PP.

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 31 of 156

upon request of [the user, the administrator] and [applications running on
the TSF].

FCS_STG_EXT.1.3 The TSF shall be capable of destroying keys/secrets in the secure key storage
upon request of [the user, the administrator].

FCS_STG_EXT.1.4 The TSF shall have the capability to allow only the application that imported
the key/secret the use of the key/secret. Exceptions may only be explicitly
authorized by [the user, the administrator].

FCS_STG_EXT.1.5 The TSF shall allow only the application that imported the key/secret to
request that the key/secret be destroyed. Exceptions may only be explicitly
authorized by [the user, the administrator].

5.1.1.21 Extended: Encrypted Cryptographic Key Storage (FCS_STG_EXT.2)

FCS_STG_EXT.2.1 The TSF shall encrypt all DEKs and KEKs and [all software- based key storage,]
by KEKs that are
[

1) Protected by the REK with [
a. encryption by a REK,
b. encryption by a KEK chaining to a REK],

2) Protected by the REK and the password with [
a. encryption by a REK and the password-derived KEK
b. encryption by a KEK chaining to a REK and the password-

derived KEK]
].

FCS_STG_EXT.2.2 DEKs and KEKs and [no other keys] shall be encrypted using one of the
following methods: [SP800-56B key establishment scheme, using AES in the
[CCM, CBC mode]].

5.1.1.22 Extended: Integrity of Encrypted Key Storage (FCS_STG_EXT.3)

FCS_STG_EXT.3.1 The TSF shall protect the integrity of any encrypted KEK by [

 [CCM] cipher mode for encryption according to FCS_STG_EXT.2;

 a keyed hash (FCS_COP.1(4)) using a key protected by a key
protected by FCS_STG_EXT.2; 10
].

FCS_STG_EXT.3.2 The TSF shall verify the integrity of the [hash] of the stored key prior to use of
the key.

5.1.1.23 Extended: EAP TLS Protocol (FCS_TLS_EXT.1)

FCS_TLS_EXT.1.1 The TSF shall implement the EAP-TLS protocol as specified in RFC 5216
implementing TLS 1.0 (RFC 2246) and [none] supporting the following
ciphersuites: [

 Mandatory Ciphersuites in accordance with RFC 3268:
o TLS_RSA_WITH_AES_128_CBC_SHA

[

 TLS_RSA_WITH_AES_256_CBC_SHA
]

10

 FCS_COP.1(4) in the protection profile is FCS_COP.1(HMAC) in the security target.

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 32 of 156

]
FCS_TLS_EXT.1.2 The TSF shall verify that the server certificate presented for EAP-TLS [chains to

one of the specified CAs, contains the specified FQDN of the acceptable
authentication server certificate].

5.1.1.24 Extended: TLS Protocol (FCS_TLS_EXT.2)

FCS_TLS_EXT.2.1 The TSF shall implement one or more of the following protocols TLS 1.2 (RFC
5246) and [TLS 1.0 (RFC 2246), TLS 1.1 (RFC 4346)] supporting the following
ciphersuites:

 Mandatory Ciphersuites:
o TLS_RSA_WITH_AES_128_CBC_SHA

[

 TLS_RSA_WITH_AES_256_CBC_SHA

 TLS_RSA_WITH_AES_128_CBC_SHA256 as defined in RFC 5246

 TLS_RSA_WITH_AES_256_CBC_ SHA256 as defined in RFC 5246

 TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 as defined in RFC
5289

 TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 as defined in RFC
5289

 TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 as defined in RFC
6460

 TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384 as defined in RFC
6460]

]
FCS_TLS_EXT.2.2 The TSF shall not establish a trusted channel if the distinguished name (DN)

contained in a certificate does not match the expected DN for the peer.

5.1.1.25 Extended: HTTPS Protocol (FCS_HTTPS_EXT.1)

FCS_HTTPS_EXT.1.1 The TSF shall implement the HTTPS protocol that complies with RFC 2818.
FCS_HTTPS_EXT.1.2 The TSF shall implement HTTPS using TLS (FCS_TLS_EXT.2).

5.1.2 User Data Protection (FDP)

5.1.2.1 Extended: Security Attribute Based Access Control (FDP_ACF_EXT.1)

FDP_ACF_EXT.1.1 The TSF shall provide a mechanism to restrict the system services that are
accessible to an application.

5.1.2.2 Extended: Data at Rest Protection (FDP_DAR_EXT.1(128))11

FDP_DAR_EXT.1.1(128) Encryption shall cover all protected data.
FDP_DAR_EXT.1.2(128) Encryption shall be performed using DEKs with AES in the [CBC] mode with

key size [128] bits.

11

 This iteration of FDP_DAR_EXT.1 is for Windows Phone which always uses a 128 bit DEK.

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 33 of 156

5.1.2.3 Extended: Data at Rest Protection (FDP_DAR_EXT.1(256))12

FDP_DAR_EXT.1.1(256) Encryption shall cover all protected data.
FDP_DAR_EXT.1.2(256) Encryption shall be performed using DEKs with AES in the [CBC] mode with

key size [128,256] bits.

5.1.2.4 Extended: Sensitive Data Encryption (FDP_DAR_EXT.2)

FDP_DAR_EXT.2.1 The TSF shall provide a mechanism for applications to mark data and keys as
sensitive.

FDP_DAR_EXT.2.2 The TSF shall use an asymmetric key scheme to encrypt and store sensitive
data received while the product is locked.

FDP_DAR_EXT.2.3 The TSF shall encrypt any stored symmetric key and any stored private key of
the asymmetric key(s) used for the protection of sensitive data according to
FCS_STG_EXT.2 selection 2.

FDP_DAR_EXT.2.4 The TSF shall decrypt the sensitive data that was received while in the locked
state upon transitioning to the unlocked state using the asymmetric key
scheme and shall re-encrypt that sensitive data using the symmetric key
scheme.

5.1.2.5 Extended: Certificate Data Storage (FDP_STG_EXT.1)

FDP_STG_EXT.1.1 The TSF shall provide protected storage for the Trust Anchor Database.

5.1.3 Identification and Authentication (FIA)

5.1.3.1 Extended: Authorization Failure Handling (FIA_AFL_EXT.1)

FIA_AFL_EXT.1.1 The TSF shall detect when [a configurable positive integer within [a range of
acceptable values from 1 to 999]] of unsuccessful authentication attempts
occur related to [last successful authentication by that user].13

FIA_AFL_EXT.1.2 When the defined number of unsuccessful authentication attempts has been
[surpassed], the TSF shall [perform [full wipe of all protected data, a
remediation action set by the administrator].14

5.1.3.2 Extended: Bluetooth Authentication (FIA_BLT_EXT.1)

FIA_BLT_EXT.1.1 The TSF shall require Bluetooth mutual authentication between devices prior
to any data transfer over the Bluetooth link.

5.1.3.3 Extended: PAE Authentication (FIA_PAE_EXT.1)

FIA_PAE_EXT.1.1 The TSF shall conform to [IEEE Standard 802.1X] for a Port Access Entity (PAE)
in the ”Supplicant” role.

5.1.3.4 Extended: Password Management (FIA_PMG_EXT.1)

FIA_PMG_EXT.1.1 The TSF shall support the following for the Password Authentication Factor:
1. Passwords shall be able to be composed of any combination of [upper and

lower case characters], number, and special characters: [“!”, “@”, “#”,

12

 This iteration of FDP_DAR_EXT.1 is for Windows 8.1 which can use either a 128 bit DEK or a 256-bit DEK, the
administrative guidance restricts the DEK in the evaluated configuration to 256 bits.
13

 Note that a lockout value of 0 denotes the account will never be locked out.
14

 The Windows Phone will wipe protected data, the typical remediation action for Windows 8.1 is to lock out the
user account.

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 34 of 156

“$”, “%”, “^”, “&”, “*”, “(“, “)”];
2. Password length up to [at least 15] characters shall be supported.

5.1.3.5 Extended: Authorization Throttling (FIA_TRT_EXT.1)

FIA_TRT_EXT.1.1 The TSF shall limit automated user authentication attempts by [enforcing a
delay between incorrect authentication attempts]. The minimum delay shall
be such that no more than [10] attempts can be attempted per [500
milliseconds].

5.1.3.6 Protected Authorization Feedback (FIA_UAU.7)

FIA_UAU.7.1 The TSF shall provide only [obscured feedback to the device’s display] to the
user while the authentication is in progress.

5.1.3.7 Extended: Authentication for Cryptographic Operation (FIA_UAU_EXT.1)

FIA_UAU_EXT.1.1 The TSF shall require the user to present the Password Authentication Factor
prior to decryption of protected data and keys at startup.

5.1.3.8 Extended: Timing of Authentication (FIA_UAU_EXT.2)

FIA_UAU_EXT.2.1 The TSF shall allow [no actions for Windows 8.1 and emergency call for
Windows Phone] on behalf of the user to be performed before the user is
authenticated. 15

FIA_UAU_EXT.2.2 The TSF shall require each user to be successfully authenticated before
allowing any other TSF-mediated actions on behalf of that user.

5.1.3.9 Extended: Re-Authorizing (FIA_UAU_EXT.3)

FIA_UAU_EXT.3.1 The TSF shall require the user to enter the correct Password Authentication
Factor when the user changes the Password Authentication Factor, and
following TSF- and user-initiated locking in order to transition to the unlocked
state, and [no other conditions].

5.1.3.10 Extended: Validation of Certificates (FIA_X509_EXT.1)

FIA_X509_EXT.1.1 The TSF shall validate certificates in accordance with the following rules:

 RFC 5280 certificate validation and certificate path validation.

 The certificate path must terminate with a certificate in the Trust
Anchor Database.

 The TSF shall validate a certificate path by ensuring the presence of
the basicConstraints extension and that the cA flag is set to TRUE for
all CA certificates.

 The TSF shall validate the revocation status of the certificate using [the
Online Certificate Status Protocol (OCSP) as specified in RFC 2560, a
Certificate Revocation List (CRL) as specified in RFC 5759].

 The TSF shall validate the extendedKeyUsage field according to the
following rules:

o Certificates used for trusted updates and executable code
integrity verification shall have the Code Signing purpose (id-

15

 The only actions that an unauthenticated user can take when a Windows device is locked is to bring up the
authentication dialog or turn the device off. An unauthenticated user may place an emergency call for the
Windows Phone or turn the device off.

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 35 of 156

kp 3 with OID 1.3.6.1.5.5.7.3.3).
o Server certificates presented for TLS shall have the Server

Authentication purpose (id-kp 1 with OID 1.3.6.1.5.5.7.3.1) in
the extendedKeyUsage field.

FIA_X509_EXT.1.2 The TSF shall only treat a certificate as a CA certificate if the basicConstraints
extension is present and the CA flag is set to TRUE.

5.1.3.11 Extended: X.509 Certificate Authentication (FIA_X509_EXT.2)

FIA_X509_EXT.2.1 The TSF shall use X.509v3 certificates as defined by RFC 5280 to support
authentication for EAP-TLS exchanges, and [IPsec, TLS, HTTPS,], and [code
signing for system software updates, code signing for mobile applications,
code signing for integrity verification, [none]].

FIA_X509_EXT.2.2 When the TSF cannot establish a connection to determine the validity of a
certificate, the TSF shall [allow the administrator to choose whether to
accept the certificate in these cases, not accept the certificate16].

FIA_X509_EXT.2.3 The TSF shall not establish a trusted communication channel if the peer
certificate is deemed invalid.

FIA_X509_EXT.2.4 The TSF shall not [install, execute] code if the code signing certificate is
deemed invalid.

FIA_X509_EXT.2.5 The TSF shall generate a Certificate Request Message as specified in RFC 2986
and be able to provide the following information in the request: public key,
Common Name, Organization, Organizational Unit, and Country.

5.1.3.12 Extended: Request Validation of Certificates (FIA_X509_EXT.3)

FIA_X509_EXT.3.1 The TSF shall provide a certificate validation service to applications.
FIA_X509_EXT.3.2 The TSF shall respond to the requesting application with the success or failure

of the validation.

5.1.4 Security Management (FMT)

5.1.4.1 Management of Security Functions Behavior by the User (FMT_MOF.1(USER))

Application Note: FMT_MOF.1(USER) corresponds to FMT_MOF.1(1) in the MDF protection profile.

This functional requirement includes the full set of selections from the protection profile for readability,

selections which are not used are marked with a strikethrough font.

FMT_MOF.1.1(USER) The TSF shall restrict the ability to [perform] the functions [

1. enroll the TOE in management
[

2. enable/disable the VPN protection,
3. enable/disable [Wi-Fi, cellular radios],
4. enable/disable data transfer capabilities over [USB port for

Windows 8.1 , Bluetooth],
5. enable/disable [personal Hotspot connections, tethered

connections], 17

16

 Windows will not accept the certificate for validation failures for IPsec, software updates, mobile applications,
and integrity verification. Windows will present the user with an option to accept the certificate for TLS/HTTPS.

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 36 of 156

6. enable/disable display notification in the locked state of: [
a. email notifications,
b. calendar appointments,
c. contact associated with phone call notification,
d. text message notification,
e. other application-based notification]

7. enable/disable developer modes,
8. enable data-at rest protection
9. enable removable media‘s data-at-rest protection,18
10. enable/disable local authentication bypass,
11. configure the Access Point Name and proxy used for communications

between the cellular network and other networks
12. configure the Bluetooth trusted channel

a. disable the Discoverable mode
b. disallow Bluetooth connections using versions 1.0, 1.1, 1.2,

2.0, and [assignment: other Bluetooth version numbers]
c. [selection: restrict Bluetooth profiles, disable legacy pairing

and JustWorks pairing, and [selection: [assignment: other
pairing methods], no other pairing methods]],

13. wipe sensitive data
14. import keys/secrets into the secure key storage,
15. destroy user-imported keys/secrets and [[any other keys/secrets]] in

the secure key storage,
16. remove imported X.509v3 certificates and [[any other X.509v3

certificate]] in the Trust Anchor Database,
17. approve import and removal by applications of X.509v3 certificates

in the Trust Anchor Database,
18. configure whether to establish a trusted channel or disallow

establishment if the TSF cannot establish a connection to determine
the validity of a certificate,

19. enable/disable cellular voice functionality,
20. enable/disable device messaging capabilities,
21. enable/disable the cellular protocols used to connect to cellular

network base stations,
22. enable/disable voice command control of device functions,
23. read audit logs kept by the TSF,
24. configure [certificate, public-key] used to validate digital signature

on applications,
25. approve exceptions for shared use of keys/secrets by multiple

applications
26. approve exceptions for destruction of keys/secrets by applications

that did not import the key/secret
27. [no other management functions]

]] to the user.

17

 For Windows 8.1 only, the Lumia phone does not provide tethered connections.
18

 For Windows 8.1 only.

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 37 of 156

5.1.4.2 Management of Security Functions Behavior by the Organization (FMT_MOF.1(ORG))

Application Note: FMT_MOF.1(ORG) corresponds to FMT_MOF.1(2) in the MDF protection profile.

This functional requirement includes the full set of selections from the protection profile for readability,

selections which are not used are marked with a strikethrough font.

FMT_MOF.1.1(ORG) The TSF shall restrict the ability to perform the functions [
1. configure password policy:

a. minimum password length
b. minimum password complexity
c. maximum password lifetime

2. configure session locking policy:
a. screen-lock enabled/disabled
b. screen lock timeout
c. number of authentication failures

3. enable/disable [camera, microphone]
4. configure application installation policy by [

a. specifying authorized application repository(s),
b. specifying a set of allowed applications and versions (an

application whitelist)
c. denying installation of applications],

[
5. enable/disable the VPN protection
6. enable/disable [Wi-Fi, mobile broadband radios, Bluetooth]
7. enable/disable data transfer capabilities over [USB port for Windows

8.1, Bluetooth],
8. enable/disable [wireless remote access connections except for

personal Hotspot service, personal Hotspot connections, tethered
connections], 19

9. specify wireless networks (SSIDs) to which the TSF may connect
10. configure security policy for each wireless network:

a. [specify the CA(s) from which the TSF will accept WLAN
authentication server certificate(s), specify the FQDN(s) of
acceptable WLAN authentication server certificate(s)]

b. ability to specify security type
c. ability to specify authentication protocol
d. specify the client credentials to be used for authentication
e. [none]

11. enable/disable developer modes,
12. enable data-at rest protection,
13. enable removable media‘s data-at-rest protection,
14. enable/disable local authentication bypass,
15. configure the Access Point Name and proxy used for communications

between the cellular network and other networks
16. configure the Bluetooth trusted channel

a. disable the Discoverable mode

19

 For Windows 8.1 only, the Lumia phone does not provide tethered connections.

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 38 of 156

b. disallow Bluetooth connections using versions 1.0, 1.1, 1.2,
2.0, and [assignment: other Bluetooth version numbers]

c. [selection: restrict Bluetooth profiles, disable legacy pairing
and JustWorks pairing, and [selection: [assignment: other
pairing methods], no other pairing methods]],

17. enable/disable display notification in the locked state of: [
a. email notifications,
b. calendar appointments,
c. contact associated with phone call notification,
d. text message notification,
e. other application-based notifications,
f. none]

18. import and remove X.509v3 certificates into/from the Trust Anchor
Database,

19. configure whether to establish a trusted channel or disallow
establishment if the TSF cannot establish a connection to determine
the validity of a certificate,

20. approve import and removal by applications of X.509v3 certificates in
the Trust Anchor Database,

21. enable/disable cellular voice functionality,
22. enable/disable device messaging capabilities,
23. enable/disable the cellular protocols used to connect to cellular

network base stations,
24. enable/disable voice command control of device functions,
25. configure [certificate] used to validate digital signature on

applications,
26. remove applications,
27. update system software,
28. install applications,
29. approve exceptions for shared use of keys/secrets by multiple

applications
30. approve exceptions for destruction of keys/secrets by applications

that did not import the key/secret
31. [none]
]
to the administrator when the device is enrolled and according to the
administrator- configured policy.

5.1.4.3 Specifications of Management Functions (FMT_SMF.1)

This functional requirement includes the full set of selections from the protection profile for readability,

selections which are not used are marked with a strikethrough font.

FMT_SMF.1.1 The TSF shall be capable of performing the following management functions: [
1. configure password policy:

a. minimum password length
b. minimum password complexity
c. maximum password lifetime

2. configure session locking policy:

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 39 of 156

a. screen-lock enabled/disabled
b. screen lock timeout
c. number of authentication failures

3. enable/disable the VPN protection
4. enable/disable [Wi-Fi, mobile broadband radios, Bluetooth]
5. enable/disable [camera, microphone]
6. specify wireless networks (SSIDs) to which the TSF may connect
7. configure security policy for each wireless network:

a. [specify the CA(s) from which the TSF will accept WLAN
authentication server certificate(s), specify the FQDN(s) of
acceptable WLAN authentication server certificate(s)]

b. ability to specify security type
c. ability to specify authentication protocol
d. specify the client credentials to be used for authentication
e. [none]

8. transition to the locked state
9. full wipe of protected data
10. configure application installation policy by [

a. specifying authorized application repository(s),
b. specifying a set of allowed applications and versions (an

application whitelist)
c. denying installation of applications],

11. import keys/secrets into the secure key storage,
12. destroy imported keys/secrets and [[any other keys/secrets]] in the

secure key storage,
13. import X.509v3 certificates into the Trust Anchor Database,
14. remove imported X.509v3 certificates and [[any other X.509v3

certificates]] in the Trust Anchor Database,
15. enroll the TOE in management
16. remove applications
17. update system software
18. install applications

[
19. enable/disable data transfer capabilities over [USB port for Windows

8.1, Bluetooth],
20. enable/disable [wireless remote access connections to the TOE except for

personal Hotspot service, personal Hotspot connections, tethered
connections], 20

21. enable/disable developer modes, 21
22. enable data-at rest protection, 22
23. enable removable media‘s data-at-rest protection, 23
24. enable/disable local authentication bypass, 24

20

 For Windows 8.1 only, the Lumia phone does not provide tethered connections.
21

 See footnote above in FMT_MOF.1(ORG).
22

 See footnote above in FMT_MOF.1(ORG).
23

 See footnote above in FMT_MOF.1(ORG).
24

 See footnote above in FMT_MOF.1(ORG).

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 40 of 156

25. configure the Access Point Name and proxy used for communications
between the cellular network and other networks 25

26. configure the Bluetooth trusted channel:
a. disable the Discoverable mode
b. disallow Bluetooth connections using versions 1.0, 1.1, 1.2, 2.0,

and [assignment: other Bluetooth version numbers]
c. [selection: restrict Bluetooth profiles, disable legacy pairing and

JustWorks pairing, and [selection: [assignment: other pairing
methods], no other pairing methods]],

27. enable/disable display notification in the locked state of: [
a. email notifications,
b. calendar appointments,
c. contact associated with phone call notification,
d. text message notification,
e. other application-based notifications,

]
28. wipe sensitive data,
29. alert the administrator,
30. remove Enterprise applications,
31. approve import and removal by applications of X.509v3 certificates in the

Trust Anchor Database,
32. configure whether to establish a trusted channel or disallow establishment

if the TSF cannot establish a connection to determine the validity of a
certificate,

33. enable/disable cellular voice functionality, 26
34. enable/disable device messaging capabilities, 27
35. enable/disable the cellular protocols used to connect to cellular network

base stations, 28
36. enable/disable voice command control of device functions,
37. read audit logs kept by the TSF,
38. configure [certificate] used to validate digital signature on applications,
39. approve exceptions for shared use of keys/secrets by multiple

applications,
40. approve exceptions for destruction of keys/secrets by applications that did

not import the key/secret,
41. configure the unlock banner,
42. [enable/disable Location services] 29
].

5.1.4.4 Extended: Specification of Remediation Actions (FMT_SMF_EXT.1)

FMT_SMF_EXT.1.1 The TSF shall offer [alert the administrator, remove Enterprise applications,]
upon unenrollment and [when the defined number of unsuccessful

25

 For the Lumia 635 and 830, the Surface 3 computer does not include a broadband modem.
26

 For the Lumia 635 and 830, the Surface 3 computer does not include a broadband modem.
27

 For the Lumia 635 and 830, the Surface 3 computer does not include a broadband modem.
28

 For the Lumia 635 and 830, the Surface 3 computer does not include a broadband modem.

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 41 of 156

authentication attempts has been surpassed wipe the device].

5.1.5 Protection of the TSF (FPT)

5.1.5.1 Extended: Anti-Exploitation Services for Address Space Layout Randomization

(FPT_AEX_EXT.1)

FPT_AEX_EXT.1.1 The TSF shall provide [address space layout randomization (ASLR) to
applications].

FPT_AEX_EXT.1.2 The base address of any user-space memory mapping will consist of at least 8
unpredictable bits.

FPT_AEX_EXT.1.3 The TSF shall provide [address space layout randomization (ASLR) to the
kernel].

FPT_AEX_EXT.1.4 The base address of any kernel-space memory mapping will consist of at least
4 unpredictable bits.

5.1.5.2 Extended: Anti-Exploitation Services for Memory Page Permissions (FPT_AEX_EXT.2)

FPT_AEX_EXT.2.1 The TSF shall be able to enforce read, write, and execute permissions on every
page of physical memory.

FPT_AEX_EXT.2.2 The TSF shall be able to enforce a policy that write and execute permissions
are not simultaneously granted on every page of physical memory.

5.1.5.3 Extended: Anti-Exploitation Services for Stack Overflow Protection (FPT_AEX_EXT.3)

FPT_AEX_EXT.3.1 TSF processes that execute in a non-privileged execution domain on the
application processor shall implement stack-based buffer overflow protection.

5.1.5.4 Extended: Domain Isolation (FPT_AEX_EXT.4)

FPT_AEX_EXT.4.1 The TSF shall protect itself from modification by untrusted subjects.
FPT_AEX_EXT.4.2 The TSF shall enforce isolation of address space between applications.

5.1.5.5 Extended: Plaintext Key Storage (FPT_KST_EXT.1)

FPT_KST_EXT.1.1 The TSF shall not store any plaintext key material in readable non-volatile
memory.

5.1.5.6 Extended: No Key Transmission (FPT_KST_EXT.2)

FPT_KST_EXT.2.1 The TSF shall not transmit any plaintext key material from the cryptographic
module.

5.1.5.7 Extended: No Plaintext Key Transport (FPT_KST_EXT.3)

FPT_KST_EXT.3.1 The TSF shall ensure it is not possible for the TOE user(s) to export plaintext
keys.

5.1.5.8 Extended: Self-Test Event Notification (FPT_NOT_EXT.1)

FPT_NOT_EXT.1.1 The TSF shall transition to non-operational mode and [log failures in the audit
record,30 notify the administrator] when the following types of failures occur:

30

 While the evaluation did not include auditing functional requirements, the failures in this requirement always
generate audit events.

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 42 of 156

 failures of the self-tests

 TSF software integrity verification failures

 [no other failures].

5.1.5.9 Reliable Time Stamps (FPT_STM.1)

FPT_STM.1.1 The TSF shall be able to provide reliable time stamps for its own use.

5.1.5.10 Extended: TSF Cryptographic Functionality Testing (FPT_TST_EXT.1)

FPT_TST_EXT.1.1 The TSF shall run a suite of self-tests [during initial start-up (on power on)] to
demonstrate the correct operation of [all cryptographic functionality].

5.1.5.11 Extended: TSF Integrity Testing (FPT_TST_EXT.2)

FPT_TST_EXT.2.1 The TSF shall verify the integrity of the Application Processor bootloader
software, Application Processor OS kernel, and [operating system executable
code and application executable code], stored in mutable media prior to its
execution through the use of [digital signature using a hardware-protected
asymmetric key].

5.1.5.12 Extended: Trusted Update: TSF Version Query (FPT_TUD_EXT.1)

FPT_TUD_EXT.1.1 The TSF shall provide authorized users the ability to [query the current version
of the TOE firmware/software].

FPT_TUD_EXT.1.2 The TSF shall provide authorized users the ability to [query the current version
of the hardware model of the device].

FPT_TUD_EXT.1.3 The TSF shall provide authorized users the ability to [query the current version
of installed mobile applications].

5.1.5.13 Extended: Trusted Update Verification (FPT_TUD_EXT.2)

FPT_TUD_EXT.2.1 The TSF shall verify [software updates to the TSF] using [a digital signature by
the manufacturer] prior to installing those updates.

FPT_TUD_EXT.2.2 The boot integrity [key] shall only be updated by [verified software].
FPT_TUD_EXT.2.3 The digital signature verification key shall [be validated to a public key in the

Trust Anchor Database, match a hardware-protected public key].
FPT_TUD_EXT.2.4 The TSF shall verify [mobile application software] using [a digital signature

mechanism] prior to installation.
FPT_TUD_EXT.2.5 The TSF shall by default only accept mobile applications cryptographically

verified by [a built-in X.509v3 certificate].31
FPT_TUD_EXT.2.6 The TSF shall verify that software updates to the TSF are a current or later

version than the current version of the TSF.

5.1.6 TOE Access (FTA)

5.1.6.1 Extended: TSF- and User-initiated Locked State (FTA_SSL_EXT.1)

FTA_SSL_EXT.1.1 The TSF shall transition to a locked state after a time interval of inactivity and
a user initiated lock, and upon transitioning to the locked state, the TSF shall
perform the following operations:

a) clearing or overwriting display devices, obscuring the previous
contents;

31

 All Windows Store Applications must signed by a Microsoft-approved certificate.

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 43 of 156

b) [Disabling any activity of the user’s data access / TSF controlled
display devices other than unlocking the session and displaying
application status].

5.1.6.2 Extended: Wireless Network Access (FTA_WSE_EXT.1)

FTA_WSE_EXT.1.1 The TSF shall be able to attempt connections to wireless networks specified as
acceptable networks as configured by the administrator in FMT_SMF.1.

5.1.6.3 Default TOE Access Banners (FTA_TAB.1)

FTA_TAB.1.1 Before establishing a user session, the TSF shall display an Administrator-
specified advisory notice and consent warning message regarding use of the
TOE.

5.1.7 Trusted Path/Channels (FTP)

5.1.7.1 Extended: Trusted Channel Communication (FTP_ITC_EXT.1)

FTP_ITC_EXT.1.1 The TSF shall use 802.11-2012, 802.1X, and EAP-TLS and [IPsec, TLS, HTTPS
protocol] to provide a communication channel between itself and another
trusted IT product that is logically distinct from other communication channels
and provides assured identification of its end points and protection of the
channel data from disclosure and detection of modification of the channel
data.

FTP_ITC_EXT.1.2 The TSF shall permit the TSF and applications to initiate communication via the
trusted channel.

FTP_ITC_EXT.1.3 The TSF shall initiate communication via the trusted channel for connection to
a wireless access point and [remote management operations].

5.2 TOE Security Assurance Requirements
The security assurance requirements for the TOE are the requirements defined in the MDF PP Assurance

Package as specified in Part 3 of the Common Criteria. No operations are applied to the assurance

components.

In addition, the assurance activities from the Protection Profile for Mobile Device Fundamentals are

used to determine that Windows satisfies the mobile device security functional requirements. These

assurance activities are described in section 5.2.2.

5.2.1 CC Part 3 Assurance Requirements

The following table is the collection of CC Part 3 assurance requirements from the Protection Profile for

Mobile Device Fundamentals.

Table 5-2 TOE Security Assurance Requirements

Requirement Class Requirement Component

ASE: Security Target ASE_INT.1: ST introduction

ASE_CCL.1: Conformance claims

ASE_OBJ.1 Security objectives

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 44 of 156

ASE_ECD.1 Extended components definition

ASE_REQ.1 Stated security requirements

ASE_TSS.1 TOE summary specification

ADV: Design ADV_FSP.1: Basic functional specification

AGD: Guidance Documents AGD_OPE.1: Operational user guidance

AGD_PRE.1: Preparative procedures

ALC: Life-cycle Support ALC_CMC.1: Labeling of the TOE

ALC_CMS.1: TOE CM Coverage

ALC_TSU_EXT.1: Timely Security Updates

ATE: Testing ATE_IND.1: Independent testing - sample

AVA: Vulnerability Assessment AVA_VAN.1: Vulnerability survey

5.2.1.1 Timely Security Updates (ALC_TSU_EXT.1)

Developer action elements:

ALC_TSU_EXT.1.1D The developer shall provide a description in the TSS of how timely security updates

are made to the TOE.

Content and presentation elements:

ALC_TSU_EXT.1.1C The description shall include the process for creating and deploying security updates

for the TOE software/firmware.

Application Note: The software to be described includes the operating systems of the application

processor and the baseband processor, as well as any firmware and applications. The process

description includes the TOE developer processes as well as any third-party (carrier) processes. The

process description includes each deployment mechanism (e.g., over- the-air updates, per-carrier

updates, downloaded updates).

ALC_TSU_EXT.1.2C The description shall express the time window as the length of time, in days,

between public disclosure of a vulnerability and the public availability of security updates to the TOE.

Application Note: The total length of time may be presented as a summation of the periods of time that

each party (e.g., TOE developer, mobile carrier) on the critical path consumes. The time period until

public availability per deployment mechanism may differ; each is described.

ALC_TSU_EXT.1.3C The description shall include the mechanisms publicly available for reporting security

issues pertaining to the TOE.

Application Note: The reporting mechanism could include web sites, email addresses, as well as a

means to protect the sensitive nature of the report (e.g., public keys that could be used to encrypt the

details of a proof-of-concept exploit).

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 45 of 156

5.2.2 Mobile Device Fundamentals PP Assurance Activities

This section copies the assurance activities from the protection profile in order to ease reading and

comparisons between the protection profile and the security target.

5.2.2.1 Cryptographic Support

5.2.2.1.1 Cryptographic Key Generation for Key Establishment (FCS_CKM.1(ASYM KA))

This assurance activity will verify the key generation and key establishments schemes used on the TOE.

Key Generation: The evaluator shall verify the implementation of the key generation routines of the

supported schemes using the applicable tests below.

Key Generation for RSA-Based Key Establishment Schemes

The evaluator shall verify the implementation of RSA Key Generation by the TOE using the Key

Generation test. This test verifies the ability of the TSF to correctly produce values for the key

components including the public verification exponent e, the private prime factors p and q, the public

modulus n and the calculation of the private signature exponent d.

Key Pair generation specifies 5 ways (or methods) to generate the primes p and q. These include:

1. Random Primes:

 Provable primes

 Probable primes

2. Primes with Conditions:

 Primes p1, p2, q1,q2, p and q shall all be provable primes

 Primes p1, p2, q1, and q2 shall be provable primes and p and q shall be probable primes

 Primes p1, p2, q1,q2, p and q shall all be probable primes

To test the key generation method for the Random Provable primes method and for all the Primes with

Conditions methods, the evaluator must seed the TSF key generation routine with sufficient data to

deterministically generate the RSA key pair. This includes the random seed(s), the public exponent of

the RSA key, and the desired key length. For each key length supported, the evaluator shall have the TSF

generate 25 key pairs. The evaluator shall verify the correctness of the TSF‘s implementation by

comparing values generated by the TSF with those generated from a known good implementation.

Key Generation for Finite-Field Cryptography (FFC) – Based 56A Schemes

FFC Domain Parameter and Key Generation Tests

The evaluator shall verify the implementation of the Parameters Generation and the Key Generation for

FFC by the TOE using the Parameter Generation and Key Generation test. This test verifies the ability of

the TSF to correctly produce values for the field prime p, the cryptographic prime q (dividing p-1), the

cryptographic group generator g, and the calculation of the private key x and public key y.

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 46 of 156

The Parameter generation specifies 2 ways (or methods) to generate the cryptographic prime q and the

field prime p:

Cryptographic and Field Primes:

 Primes q and p shall both be provable primes

 Primes q and field prime p shall both be probable primes

and two ways to generate the cryptographic group generator g:

Cryptographic Group Generator:

 Generator g constructed through a verifiable process

 Generator g constructed through an unverifiable process.

The key generation specifies 2 ways to generate the private key x:

Private Key:

 len(q) bit output of RBG where 1 <=x <= q-1

 len(q) + 64 bit output of RBG, followed by a mod q-1 operation where 1<= x<=q-1.

The security strength of the RBG must be at least that of the security offered by the FFC parameter set.

 To test the cryptographic and field prime generation method for the provable primes method and/or

the group generator g for a verifiable process, the evaluator must seed the TSF parameter generation

routine with sufficient data to deterministically generate the parameter set.

For each key length supported, the evaluator shall have the TSF generate 25 parameter sets and key

pairs. The evaluator shall verify the correctness of the TSF‘s implementation by comparing values

generated by the TSF with those generated from a known good implementation. Verification must also

confirm

 g != 0,1

 q divides p-1

 g^q mod p = 1

 g^x mod p = y

for each FFC parameter set and key pair.

Key Generation for Elliptic Curve Cryptography (ECC) - Based 56A Schemes

ECC Key Generation Test

For each supported NIST curve, i.e., P-256, P-284 and P-521, the evaluator shall require the

implementation under test (IUT) to generate 10 private/public key pairs. The private key shall be

generated using an approved random bit generator (RBG). To determine correctness, the evaluator shall

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 47 of 156

submit the generated key pairs to the public key verification (PKV) function of a known good

implementation.

ECC Public Key Verification (PKV) Test

For each supported NIST curve, i.e., P-256, P-284 and P-521, the evaluator shall generate 10

private/public key pairs using the key generation function of a known good implementation and modify

five of the public key values so that they are incorrect, leaving five values unchanged (i.e., correct). The

evaluator shall obtain in response a set of 10 PASS/FAIL values.

Key Establishment Schemes

The evaluator shall verify the implementation of the key establishment schemes of the supported by the

TOE using the applicable tests below.

SP800-56A Key Establishment Schemes

The evaluator shall verify a TOE's implementation of SP800-56A key agreement schemes using the

following Function and Validity tests. These validation tests for each key agreement scheme verify that a

TOE has implemented the components of the key agreement scheme according to the specifications in

the Recommendation. These components include the calculation of the DLC primitives (the shared

secret value Z) and the calculation of the derived keying material (DKM) via the Key Derivation Function

(KDF). If key confirmation is supported, the evaluator shall also verify that the components of key

confirmation have been implemented correctly, using the test procedures described below. This

includes the parsing of the DKM, the generation of MACdata and the calculation of MACtag.

Function Test

The Function test verifies the ability of the TOE to implement the key agreement schemes correctly. To

conduct this test the evaluator shall generate or obtain test vectors from a known good implementation

of the TOE supported schemes. For each supported key agreement scheme-key agreement role

combination, KDF type, and, if supported, key confirmation role- key confirmation type combination, the

tester shall generate 10 sets of test vectors. The data set consists of one set of domain parameter values

(FFC) or the NIST approved curve (ECC) per 10 sets of public keys. These keys are static, ephemeral or

both depending on the scheme being tested.

The evaluator shall obtain the DKM, the corresponding TOE‘s public keys (static and/or ephemeral), the

MAC tag(s), and any inputs used in the KDF, such as the Other Information field OI and TOE id fields.

If the TOE does not use a KDF defined in SP 800-56A, the evaluator shall obtain only the public keys and

the hashed value of the shared secret.

The evaluator shall verify the correctness of the TSF‘s implementation of a given scheme by using a

known good implementation to calculate the shared secret value, derive the keying material DKM, and

compare hashes or MAC tags generated from these values.

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 48 of 156

If key confirmation is supported, the TSF shall perform the above for each implemented approved MAC

algorithm.

Validity Test

The Validity test verifies the ability of the TOE to recognize another party‘s valid and invalid key

agreement results with or without key confirmation. To conduct this test, the evaluator shall obtain a list

of the supporting cryptographic functions included in the SP800-56A key agreement implementation to

determine which errors the TOE should be able to recognize. The evaluator generates a set of 24 (FFC)

or 30 (ECC) test vectors consisting of data sets including domain parameter values or NIST approved

curves, the evaluator‘s public keys, the TOE‘s public/private key pairs, MACTag, and any inputs used in

the KDF, such as the other info and TOE id fields.

The evaluator shall inject an error in some of the test vectors to test that the TOE recognizes invalid key

agreement results caused by the following fields being incorrect: the shared secret value Z, the DKM,

the other information field OI, the data to be MACed, or the generated MACTag. If the TOE contains the

full or partial (only ECC) public key validation, the evaluator will also individually inject errors in both

parties‘ static public keys, both parties‘ ephemeral public keys and the TOE‘s static private key to assure

the TOE detects errors in the public key validation function and/or the partial key validation function (in

ECC only). At least two of the test vectors shall remain unmodified and therefore should result in valid

key agreement results (they should pass).

The TOE shall use these modified test vectors to emulate the key agreement scheme using the

corresponding parameters. The evaluator shall compare the TOE‘s results with the results using a known

good implementation verifying that the TOE detects these errors.

SP800-56B Key Establishment Schemes

At this time, detailed test procedures for RSA-based key establishment schemes are not available. In

order to show that the TSF complies with 800-56A and/or 800-56B, depending on the selections made,

the evaluator shall ensure that the TSS contains the following information:

 The TSS shall list all sections of the appropriate 800-56 standard(s) to which the TOE complies.

 For each applicable section listed in the TSS, for all statements that are not "shall" (that is, "shall

not", "should", and "should not"), if the TOE implements such options it shall be described in the

TSS. If the included functionality is indicated as "shall not" or "should not" in the standard, the

TSS shall provide a rationale for why this will not adversely affect the security policy

implemented by the TOE.

 For each applicable section of 800-56A and 800-56B (as selected), any omission of functionality

related to "shall" or “should” statements shall be described.

5.2.2.1.2 Cryptographic Key Generation for Authentication (FCS_CKM.1(ASYM AU))

If the TSF implements a FIPS 186-4 signature scheme, this requirement is verified under FCS_COP.1.1(3).

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 49 of 156

If the ESF implements the ANSI X9.31-1998 scheme, the evaluator shall check to ensure that the TSS

describes how the key-pairs are generated. In order to show that the TSF implementation complies with

ANSI X9.31-1998, the evaluator shall ensure that the TSS contains the following information:

 The TSS shall list all sections of the standard to which the TOE complies;

 For each applicable section listed in the TSS, for all statements that are not "shall" (that is, "shall

not", "should", and "should not"), if the TOE implements such options it shall be described in the

TSS. If the included functionality is indicated as "shall not" or "should not" in the standard, the

TSS shall provide a rationale for why this will not adversely affect the security policy

implemented by the TOE;

 For each applicable section of Appendix B, any omission of functionality related to "shall" or

“should” statements shall be described.

5.2.2.1.3 Cryptographic Key Generation for WLAN (FCS_CKM.1(WLAN))

The cryptographic primitives will be verified through assurance activities specified later in this PP. The

evaluator shall verify that the TSS describes how the primitives defined and implemented by this PP are

used by the TOE in establishing and maintaining secure connectivity to the wireless clients. The TSS shall

also provide a description of the developer‘s method(s) of assuring that their implementation conforms

to the cryptographic standards; this includes not only testing done by the developing organization, but

also any third-party testing that is performed (e.g. WPA2 certification). The evaluator shall ensure that

the description of the testing methodology is of sufficient detail to determine the extent to which the

details of the protocol specifics are tested.

5.2.2.1.4 Cryptographic Key Distribution for WLAN (FCS_CKM.2)

The evaluator shall check the TSS to ensure that it describes how the GTK is unwrapped prior to being

installed for use on the TOE using the AES implementation specified in this PP. The evaluator shall also

perform the following tests:

Test 1: The evaluator shall successfully connect the TOE to the access point. As the TOE is connected, the

evaluator shall observe that the GTK is not transmitted in the clear between the TOE and the Access

Point.

Test 2: The evaluator shall cause a broadcast message to be sent by the Access Point to which the TOE is

connected. The evaluator shall ensure the message is encrypted and cannot be read in transit, and that

the TOE is able to decrypt and read the message sent.

5.2.2.1.5 Extended: Cryptographic Key Support for Root Encryption Key (FCS_CKM_EXT.1)

The evaluator shall review the TSS to determine that a REK is supported by the product, that the TSS

includes a description of the protection provided by the product for a REK, and that the TSS includes a

description of the method of generation of a REK.

The evaluator shall verify that the description of the protection of a REK describes how any reading,

import, and export of that REK is prevented. (For example, if the hardware protecting the REK is

removable, the description should include how other devices are prevented from reading the REK.) The

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 50 of 156

evaluator shall verify that the TSS describes how encryption/decryption actions are isolated so as to

prevent applications and system-level processes from reading the REK while allowing

encryption/decryption by the key.

If “hardware-isolated” is selected and REK(s) are isolated from the rich OS by a separate processor

execution environment, the evaluator shall verify that the description includes how the rich OS is

prevented from accessing the memory containing REK key material , which software is allowed access to

the REK, how any other software in the execution environment is prevented from reading that key

material, and what other mechanisms prevent the REK key material from being written to shared

memory locations between the rich OS and the separate execution environment.

If key derivation is performed using a REK, the evaluator shall ensure that the TSS description includes a

description of the key derivation function and shall verify the key derivation uses an approved derivation

mode and key expansion algorithm according to SP 800-108. (Additional key expansion algorithms are

defined in other NIST Special Publications.)

The evaluator shall verify that the generation of a REK meets the FCS_RBG_EXT.1.1 and

FCS_RBG_EXT.1.2 requirements:

 If REK(s) is/are generated on-device, the TSS shall include a description of the generation

mechanism including what triggers a generation, how the functionality described by

FCS_RBG_EXT.1 is invoked, and whether a separate instance of the RBG is used for REK(s).

 If REK(s) is/are generated off-device, the TSS shall include evidence that the RBG meets

FCS_RBG_EXT.1.2. This will likely a second set of RBG documentation equivalent to the

documentation provided for the RBG assurance activities. In addition, the TSS shall describe the

manufacturing process that prevents the device manufacturer from accessing any REKs.

5.2.2.1.6 Extended: Cryptographic Key Random Generation for Data Encryption Keys

(FCS_CKM_EXT.2)

The evaluator shall review the TSS to determine that it describes how the functionality described by

FCS_RBG_EXT.1 is invoked to generate DEKs. The evaluator uses the description of the RBG functionality

in FCS_RBG_EXT.1 or documentation available for the operational environment to determine that the

key size being requested is identical to the key size and mode to be used for the encryption/decryption

of the data.

5.2.2.1.7 Extended: Cryptographic Key Generation for Key Encryption Keys (FCS_CKM_EXT.3)

The evaluator shall examine the password hierarchy TSS to ensure that the formation of all KEKs is

described and that the key sizes match that described by the ST author.

 The evaluator shall review the TSS to verify that it contains a description of the PBKDF use to
derive KEKs. This description must include the size and storage location of salts. This activity
may be performed in combination with that for FCS_COP.1(5).

 If the KEK is generated by an RBG, the evaluator shall review the TSS to determine that it
describes how the functionality described by FCS_RBG_EXT.1 is invoked. The evaluator uses the

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 51 of 156

description of the RBG functionality in FCS_RBG_EXT.1 or documentation available for the
operational environment to determine that the key size being requested is greater than or equal
to the key size and mode to be used for the encryption/decryption of the data.

 If the KEK is generated according to an asymmetric key scheme, the evaluator shall review the
TSS to determine that it describes how the functionality described by FCS_CKM.1(1) is invoked.
The evaluator uses the description of the key generation functionality in FCS_CKM.1(1) or
documentation available for the operational environment to determine that the key strength
being requested is greater than or equal to 112 bits.

 If the KEK is formed from a combination, the evaluator shall verify that the TSS describes the
method of combination and that this method is either an XOR, a KDF, or encryption. If a KDF is
used, the evaluator shall ensure that the TSS description includes a description of the key
derivation function and shall verify the key derivation uses an approved derivation mode and
key expansion algorithm according to SP 800-108. (Additional key expansion algorithms are
defined in other NIST Special Publications.)

5.2.2.1.8 Extended: Cryptographic Key Destruction (FCS_CKM_EXT.4)

The evaluator shall check to ensure the TSS describes when each of the plaintext keys (DEKs, software-

based key storage, and KEKs) are cleared including on system power off, on wipe function, on

disconnection of trusted channels, when no longer needed by the trusted channel per the protocol,

when transitioning to the locked state (and possibly including immediately after use, while in the locked

state, etc.); and the type of clearing procedure that is performed (cryptographic erase, overwrite with

zeros, overwrite three or more times by a different alternating pattern, overwrite with random pattern,

or block erase). If different types of memory are used to store the materials to be protected, the

evaluator shall check to ensure that the TSS describes the clearing procedure in terms of the memory in

which the data are stored (for example, "secret keys stored on flash are cleared by overwriting once

with zeros, while secret keys stored on the internal persistent storage device are cleared by overwriting

three times with a random pattern that is changed before each write").

Assurance Activity Note: The following tests require the developer to provide access to a test platform

that provides the evaluator with tools that are typically not found on consumer Mobile Device products.

For each key clearing situation, including on system power off, on wipe function, on disconnection of

trusted channels, when no longer needed by the trusted channel per the protocol, and when

transitioning to the locked state (and possibly including immediately after use, while in the locked state,

etc.) the evaluator shall repeat the following test.

Test 1: The evaluator shall utilize appropriate combinations of specialized operational environment and

development tools (debuggers, simulators, etc.) for the TOE and instrumented TOE builds to test that

keys are cleared correctly, including all intermediate copies of the key that may have been created

internally by the TOE during normal cryptographic processing with that key.

Cryptographic TOE implementations in software shall be loaded and exercised under a debugger to

perform such tests. The evaluator shall perform the following test for each key subject to clearing,

including intermediate copies of keys that are persisted encrypted by the TOE:

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 52 of 156

1. Load the instrumented TOE build in a debugger.

2. Record the value of the key in the TOE subject to clearing.

3. Cause the TOE to perform a normal cryptographic processing with the key from #1.

4. Cause the TOE to clear the key.

5. Cause the TOE to stop the execution but not exit.

6. Cause the TOE to dump the entire memory footprint of the TOE into a binary file.

7. Search the content of the binary file created in #4 for instances of the known key value

from #1.

The test succeeds if no copies of the key from #1 are found in step #7 above and fails otherwise.

The evaluator shall perform this test on all keys, including those persisted in encrypted form, to ensure

intermediate copies are cleared.

Test 2: In cases where the TOE is implemented in firmware and operates in a limited operating

environment that does not allow the use of debuggers, the evaluator shall utilize a simulator for the TOE

on a general purpose operating system. The evaluator shall provide a rationale explaining the

instrumentation of the simulated test environment and justifying the obtained test results.

5.2.2.1.9 Extended: TSF Wipe (FCS_CKM_EXT.5)

The evaluator shall check to ensure the TSS describes how the device is wiped; and the type of clearing

procedure that is performed (cryptographic erase or overwrite) and, if overwrite is performed, the

overwrite procedure (overwrite with zeros, overwrite three or more times by a different alternating

pattern, overwrite with random pattern, or block erase). If different types of memory are used to store

the data to be protected, the evaluator shall check to ensure that the TSS describes the clearing

procedure in terms of the memory in which the data are stored (for example, "data stored on flash are

cleared by overwriting once with zeros, while data stored on the internal persistent storage device are

cleared by overwriting three times with a random pattern that is changed before each write").

Assurance Activity Note: The following tests require the developer to provide access to a test platform

that provides the evaluator with tools that are typically not found on consumer Mobile Device products.

The assurance activities differ for the two wipe methods:

Test for Method 1: The evaluator shall enable encryption according to the AGD guidance. The evaluator

shall use the test outlined for FCS_CKM_EXT.4, implementing the wipe command according to the AGD

guidance provided for FMT_SMF.1 and as defined in Test 1, Step 4 of the assurance activities specified

following FCS_CKM_EXT.4.

Test for Method 2: The evaluator shall enable encryption according to the AGD guidance. The evaluator

shall create user data (protected data), for example, by using an application. The evaluator shall use a

tool provided by the developer to examine this data stored in memory. The evaluator shall initiate the

wipe command according to the AGD guidance provided for FMT_SMF.1. The evaluator shall use a tool

provided by the developer to examine the same data location in memory to verify that the data has

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 53 of 156

been wiped according to the method described in the TSS. This test shall be repeated for each type of

memory used to store the data to be protected.

5.2.2.1.10 Extended: Cryptographic Salt Generation (FCS_CKM_EXT.6)

The ST author shall provide a description in the TSS regarding the salt generation. The evaluator shall

confirm that the salt is generating using an RBG described in FCS_RBG_EXT.1.

5.2.2.1.11 Cryptographic Operation for Data Encryption/Decryption (FCS_COP.1(SYM))

AES-CBC Tests

AES-CBC Known Answer Tests

There are four Known Answer Tests (KATs), described below. In all KATs, the plaintext, ciphertext, and IV

values shall be 128-bit blocks. The results from each test may either be obtained by the evaluator

directly or by supplying the inputs to the implementer and receiving the results in response. To

determine correctness, the evaluator shall compare the resulting values to those obtained by submitting

the same inputs to a known good implementation.

KAT-1. To test the encrypt functionality of AES-CBC, the evaluator shall supply a set of 10 plaintext

values and obtain the ciphertext value that results from AES-CBC encryption of the given plaintext using

a key value of all zeros and an IV of all zeros. Five plaintext values shall be encrypted with a 128-bit all-

zeros key, and the other five shall be encrypted with a 256-bit all-zeros key.

To test the decrypt functionality of AES-CBC, the evaluator shall perform the same test as for encrypt,

using 10 ciphertext values as input and AES-CBC decryption.

KAT-2. To test the encrypt functionality of AES-CBC, the evaluator shall supply a set of 10 key values and

obtain the ciphertext value that results from AES-CBC encryption of an all-zeros plaintext using the given

key value and an IV of all zeros. Five of the keys shall be 128-bit keys, and the other five shall be 256-bit

keys.

To test the decrypt functionality of AES-CBC, the evaluator shall perform the same test as for encrypt,

using an all-zero ciphertext value as input and AES-CBC decryption.

KAT-3. To test the encrypt functionality of AES-CBC, the evaluator shall supply the two sets of key values

described below and obtain the ciphertext value that results from AES encryption of an all-zeros

plaintext using the given key value and an IV of all zeros. The first set of keys shall have 128 128-bit keys,

and the second set shall have 256 256-bit keys. Key i in each set shall have the leftmost i bits be ones

and the rightmost N-i bits be zeros, for i in [1,N].

To test the decrypt functionality of AES-CBC, the evaluator shall supply the two sets of key and

ciphertext value pairs described below and obtain the plaintext value that results from AES-CBC

decryption of the given ciphertext using the given key and an IV of all zeros. The first set of

key/ciphertext pairs shall have 128 128-bit key/ciphertext pairs, and the second set of key/ciphertext

pairs shall have 256 256-bit key/ciphertext pairs. Key i in each set shall have the leftmost i bits be ones

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 54 of 156

and the rightmost N-i bits be zeros, for i in [1,N]. The ciphertext value in each pair shall be the value that

results in an all-zeros plaintext when decrypted with its corresponding key.

KAT-4. To test the encrypt functionality of AES-CBC, the evaluator shall supply the set of 128 plaintext

values described below and obtain the two ciphertext values that result from AES-CBC encryption of the

given plaintext using a 128-bit key value of all zeros with an IV of all zeros and using a 256-bit key value

of all zeros with an IV of all zeros, respectively. Plaintext value i in each set shall have the leftmost i bits

be ones and the rightmost 128-i bits be zeros, for i in [1,128].

To test the decrypt functionality of AES-CBC, the evaluator shall perform the same test as for encrypt,

using ciphertext values of the same form as the plaintext in the encrypt test as input and AES-CBC

decryption.

AES-CBC Multi-Block Message Test

The evaluator shall test the encrypt functionality by encrypting an i-block message where 1 < i <=10. The

evaluator shall choose a key, an IV and plaintext message of length i blocks and encrypt the message,

using the mode to be tested, with the chosen key and IV. The ciphertext shall be compared to the result

of encrypting the same plaintext message with the same key and IV using a known good

implementation.

The evaluator shall also test the decrypt functionality for each mode by decrypting an i-block message

where 1 < i <=10. The evaluator shall choose a key, an IV and a ciphertext message of length i blocks and

decrypt the message, using the mode to be tested, with the chosen key and IV. The plaintext shall be

compared to the result of decrypting the same ciphertext message with the same key and IV using a

known good implementation.

AES-CBC Monte Carlo Tests

The evaluator shall test the encrypt functionality using a set of 200 plaintext, IV, and key 3- tuples. 100

of these shall use 128 bit keys, and 100 shall use 256 bit keys. The plaintext and IV values shall be 128-bit

blocks. For each 3-tuple, 1000 iterations shall be run as follows:

Input: PT, IV, Key

for i = 1 to 1000:

if i == 1:

CT[1] = AES-CBC-Encrypt(Key, IV, PT)

PT = IV

else:

CT[i] = AES-CBC-Encrypt(Key, PT)

PT = CT[i-1]

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 55 of 156

The ciphertext computed in the 1000th iteration (i.e., CT[1000]) is the result for that trial. This result

shall be compared to the result of running 1000 iterations with the same values using a known good

implementation.

The evaluator shall test the decrypt functionality using the same test as for encrypt, exchanging CT and

PT and replacing AES-CBC-Encrypt with AES-CBC-Decrypt.

AES-CCM Tests

The evaluator shall test the generation-encryption and decryption-verification functionality of AES-CCM

for the following input parameter and tag lengths:

128 bit and 256 bit keys

Two payload lengths. One payload length shall be the shortest supported payload length, greater than

or equal to zero bytes. The other payload length shall be the longest supported payload length, less than

or equal to 32 bytes (256 bits).

Two or three associated data lengths. One associated data length shall be 0, if supported. One

associated data length shall be the shortest supported payload length, greater than or equal to zero

bytes. One associated data length shall be the longest supported payload length, less than or equal to 32

bytes (256 bits). If the implementation supports an associated data length of 216 bytes, an associated

data length of 216 bytes shall be tested.

Nonce lengths. All supported nonce lengths between 7 and 13 bytes, inclusive, shall be tested.

Tag lengths. All supported tag lengths of 4, 6, 8, 10, 12, 14 and 16 bytes shall be tested.

To test the generation-encryption functionality of AES-CCM, the evaluator shall perform the following

four tests:

Test 1. For EACH supported key and associated data length and ANY supported payload, nonce and tag

length, the evaluator shall supply one key value, one nonce value and 10 pairs of associated data and

payload values and obtain the resulting ciphertext.

Test 2. For EACH supported key and payload length and ANY supported associated data, nonce and tag

length, the evaluator shall supply one key value, one nonce value and 10 pairs of associated data and

payload values and obtain the resulting ciphertext.

Test 3. For EACH supported key and nonce length and ANY supported associated data, payload and tag

length, the evaluator shall supply one key value and 10 associated data, payload and nonce value 3-

tuples and obtain the resulting ciphertext.

Test 4. For EACH supported key and tag length and ANY supported associated data, payload and nonce

length, the evaluator shall supply one key value, one nonce value and 10 pairs of associated data and

payload values and obtain the resulting ciphertext.

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 56 of 156

To determine correctness in each of the above tests, the evaluator shall compare the ciphertext with the

result of generation-encryption of the same inputs with a known good implementation.

To test the decryption-verification functionality of AES-CCM, for EACH combination of supported

associated data length, payload length, nonce length and tag length, the evaluator shall supply a key

value and 15 nonce, associated data and ciphertext 3-tuples and obtain either a FAIL result or a PASS

result with the decrypted payload. The evaluator shall supply 10 tuples that should FAIL and 5 that

should PASS per set of 15. Additionally, the evaluator shall use tests from the IEEE 802.11-02/362r6

document ―Proposed Test vectors for IEEE 802.11 TGi‖, dated September 10, 2002, Section 2.1 AES-

CCMP Encapsulation Example and Section 2.2 Additional AES CCMP Test Vectors to further verify the

IEEE 802.11-2007 implementation of AES-CCMP.

AES-GCM Monte Carlo Test

The evaluator shall test the authenticated encrypt functionality of AES-GCM for each combination of the

following input parameter lengths:

128 bit and 256 bit keys

Two plaintext lengths. One of the plaintext lengths shall be a non-zero integer multiple of 128 bits, if

supported. The other plaintext length shall not be an integer multiple of 128 bits, if supported.

Three AAD lengths. One AAD length shall be 0, if supported. One AAD length shall be a non-zero integer

multiple of 128 bits, if supported. One AAD length shall not be an integer multiple of 128 bits, if

supported.

Two IV lengths. If 96 bit IV is supported, 96 bits shall be one of the two IV lengths tested.

The evaluator shall test the encrypt functionality using a set of 10 key, plaintext, AAD, and IV tuples for

each combination of parameter lengths above and obtain the ciphertext value and tag that results from

AES-GCM authenticated encrypt. Each supported tag length shall be tested at least once per set of 10.

The IV value may be supplied by the evaluator or the implementation being tested, as long as it is

known.

The evaluator shall test the decrypt functionality using a set of 10 key, ciphertext, tag, AAD, and IV 5-

tuples for each combination of parameter lengths above and obtain a Pass/Fail result on authentication

and the decrypted plaintext if Pass. The set shall include five tuples that Pass and five that Fail.

The results from each test may either be obtained by the evaluator directly or by supplying the inputs to

the implementer and receiving the results in response. To determine correctness, the evaluator shall

compare the resulting values to those obtained by submitting the same inputs to a known good

implementation.

XTS-AES Monte Carlo Test

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 57 of 156

The evaluator shall test the encrypt functionality of XTS-AES for each combination of the following input

parameter lengths:

256 bit (for AES-128) and 512 bit (for AES-256) keys

Three data unit (i.e., plaintext) lengths. One of the data unit lengths shall be a non- zero integer

multiple of 128 bits, if supported. One of the data unit lengths shall be an integer multiple of 128 bits, if

supported. The third data unit length shall be either the longest supported data unit length or 216 bits,

whichever is smaller.

using a set of 100 (key, plaintext and 128-bit random tweak value) 3-tuples and obtain the ciphertext

that results from XTS-AES encrypt.

The evaluator may supply a data unit sequence number instead of the tweak value if the

implementation supports it. The data unit sequence number is a base-10 number ranging between 0

and 255 that implementations convert to a tweak value internally.

The evaluator shall test the decrypt functionality of XTS-AES using the same test as for encrypt, replacing

plaintext values with ciphertext values and XTS-AES encrypt with XTS- AES decrypt.

AES Key Wrap (AES-KW) and Key Wrap with Padding (AES-KWP)

Test The evaluator shall test the authenticated encryption functionality of AES-KW for EACH

combination of the following input parameter lengths:

128 and 256 bit key encryption keys (KEKs)

Three plaintext lengths. One of the plaintext lengths shall be two semi-blocks (128 bits). One of the

plaintext lengths shall be three semi-blocks (192 bits). The third data unit length shall be the longest

supported plaintext length less than or equal to 64 semi-blocks (4096 bits).

using a set of 100 key and plaintext pairs and obtain the ciphertext that results from AES-KW

authenticated encryption. To determine correctness, the evaluator shall use the AES-KW authenticated-

encryption function of a known good implementation.

The evaluator shall test the authenticated-decryption functionality of AES-KW using the same test as for

authenticated-encryption, replacing plaintext values with ciphertext values and AES-KW authenticated-

encryption with AES-KW authenticated-decryption.

The evaluator shall test the authenticated-encryption functionality of AES-KWP using the same test as

for AES-KW authenticated-encryption with the following change in the three plaintext lengths:

One plaintext length shall be one octet. One plaintext length shall be 20 octets (160 bits).

One plaintext length shall be the longest supported plaintext length less than or equal to 512 octets

(4096 bits).

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 58 of 156

The evaluator shall test the authenticated-decryption functionality of AES-KWP using the same test as

for AES-KWP authenticated-encryption, replacing plaintext values with ciphertext values and AES-KWP

authenticated-encryption with AES-KWP authenticated- decryption.

5.2.2.1.12 Cryptographic Operation for Hashing (FCS_COP.1(HASH))

The evaluator checks the AGD documents to determine that any configuration that is required to be

done to configure the functionality for the required hash sizes is present. The evaluator shall check that

the association of the hash function with other TSF cryptographic functions (for example, the digital

signature verification function) is documented in the TSS.

The TSF hashing functions can be implemented in one of two modes. The first mode is the byte-oriented

mode. In this mode the TSF only hashes messages that are an integral number of bytes in length; i.e.,

the length (in bits) of the message to be hashed is divisible by 8. The second mode is the bit-oriented

mode. In this mode the TSF hashes messages of arbitrary length. As there are different tests for each

mode, an indication is given in the following sections for the bit-oriented vs. the byte-oriented testmacs.

The evaluator shall perform all of the following tests for each hash algorithm implemented by the TSF

and used to satisfy the requirements of this PP.

Short Messages Test - Bit-oriented Mode

The evaluators devise an input set consisting of m+1 messages, where m is the block length of the hash

algorithm. The length of the messages range sequentially from 0 to m bits. The message text shall be

pseudorandomly generated. The evaluators compute the message digest for each of the messages and

ensure that the correct result is produced when the messages are provided to the TSF.

Short Messages Test - Byte-oriented Mode

The evaluators devise an input set consisting of m/8+1 messages, where m is the block length of the

hash algorithm. The length of the messages range sequentially from 0 to m/8 bytes, with each message

being an integral number of bytes. The message text shall be pseudorandomly generated. The

evaluators compute the message digest for each of the messages and ensure that the correct result is

produced when the messages are provided to the TSF.

Selected Long Messages Test - Bit-oriented Mode

The evaluators devise an input set consisting of m messages, where m is the block length of the hash

algorithm. The length of the ith message is 512 + 99*i, where 1 ≤ i ≤ m. The message text shall be

pseudorandomly generated. The evaluators compute the message digest for each of the messages and

ensure that the correct result is produced when the messages are provided to the TSF.

Selected Long Messages Test - Byte-oriented Mode

The evaluators devise an input set consisting of m/8 messages, where m is the block length of the hash

algorithm. The length of the ith message is 512 + 8*99*i, where 1 ≤ i ≤ m/8. The message text shall be

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 59 of 156

pseudorandomly generated. The evaluators compute the message digest for each of the messages and

ensure that the correct result is produced when the messages are provided to the TSF.

Pseudorandomly Generated Messages Test

This test is for byte-oriented implementations only. The evaluators randomly generate a seed that is n

bits long, where n is the length of the message digest produced by the hash function to be tested. The

evaluators then formulate a set of 100 messages and associated digests by following the algorithm

provided in Figure 1 of [SHAVS]. The evaluators then ensure that the correct result is produced when the

messages are provided to the TSF.

5.2.2.1.13 Cryptographic Operation for Signature Algorithms (FCS_COP.1(SIGN))

Key Generation:

Key Generation for RSA Signature Schemes

The evaluator shall verify the implementation of RSA Key Generation by the TOE using the Key

Generation test. This test verifies the ability of the TSF to correctly produce values for the key

components including the public verification exponent e, the private prime factors p and q, the public

modulus n and the calculation of the private signature exponent d.

Key Pair generation specifies 5 ways (or methods) to generate the primes p and q. These include:

1) Random Primes:

 Provable primes

 Probable primes

2) Primes with Conditions:

 Primes p1, p2, q1,q2, p and q shall all be provable primes

 Primes p1, p2, q1, and q2 shall be provable primes and p and q shall be probable primes

 Primes p1, p2, q1,q2, p and q shall all be probable primes

To test the key generation method for the Random Provable primes method and for all the Primes with

Conditions methods, the evaluator must seed the TSF key generation routine with sufficient data to

deterministically generate the RSA key pair. This includes the random seed(s), the public exponent of

the RSA key, and the desired key length. For each key length supported, the evaluator shall have the TSF

generate 25 key pairs. The evaluator shall verify the correctness of the TSF‘s implementation by

comparing values generated by the TSF with those generated from a known good implementation.

ECDSA Key Generation Tests

FIPS 186-4 ECDSA Key Generation Test

For each supported NIST curve, i.e., P-256, P-284 and P-521, the evaluator shall require the

implementation under test (IUT) to generate 10 private/public key pairs. The private key shall be

generated using an approved random bit generator (RBG). To determine correctness, the evaluator shall

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 60 of 156

submit the generated key pairs to the public key verification (PKV) function of a known good

implementation.

FIPS 186-4 Public Key Verification (PKV) Test

For each supported NIST curve, i.e., P-256, P-284 and P-521, the evaluator shall generate 10

private/public key pairs using the key generation function of a known good implementation and modify

five of the public key values so that they are incorrect, leaving five values unchanged (i.e., correct). The

evaluator shall obtain in response a set of 10 PASS/FAIL values.

ECDSA Algorithm Tests

ECDSA FIPS 186-4 Signature Generation Test

For each supported NIST curve (i.e., P-256, P-284 and P-521) and SHA function pair, the evaluator shall

generate 10 1024-bit long messages and obtain for each message a public key and the resulting

signature values R and S. To determine correctness, the evaluator shall use the signature verification

function of a known good implementation.

ECDSA FIPS 186-4 Signature Verification Test

For each supported NIST curve (i.e., P-256, P-284 and P-521) and SHA function pair, the evaluator shall

generate a set of 10 1024-bit message, public key and signature tuples and modify one of the values

(message, public key or signature) in five of the 10 tuples. The evaluator shall obtain in response a set of

10 PASS/FAIL values.

RSA Signature Algorithm Tests

Signature Generation Test

The evaluator shall verify the implementation of RSA Signature Generation by the TOE using the

Signature Generation Test. To conduct this test the evaluator must generate or obtain 10 messages from

a trusted reference implementation for each modulus size/SHA combination supported by the TSF. The

evaluator shall have the TOE use their private key and modulus value to sign these messages. The

evaluator shall verify the correctness of the TSF‘s signature using a known good implementation and the

associated public keys to verify the signatures.

Signature Verification Test

The evaluator shall perform the Signature Verification test to verify the ability of the TOE to recognize

another party‘s valid and invalid signatures. The evaluator shall inject errors into the test vectors

produced during the Signature Verification Test by introducing errors in some of the public keys e,

messages, IR format, and/or signatures. The TOE attempts to verify the signatures and returns success

or failure.

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 61 of 156

The evaluator shall use these test vectors to emulate the signature verification test using the

corresponding parameters and verify that the TOE detects these errors.

5.2.2.1.14 Cryptographic Operation for Keyed Hash Algorithms (FCS_COP.1(HMAC))

The evaluator shall examine the TSS to ensure that it specifies the following values used by the HMAC

function: key length, hash function used, block size, and output MAC length used.

For each of the supported parameter sets, the evaluator shall compose 15 sets of test data. Each set

shall consist of a key and message data. The evaluator shall have the TSF generate HMAC tags for these

sets of test data. The resulting MAC tags shall be compared to the result of generating HMAC tags with

the same key and IV using a known good implementation.

5.2.2.1.15 Cryptographic Operation for Password Based Key Derivation (FCS_COP.1(PBKD))

The evaluator shall check that the TSS describes the method by which the password is first encoded and

then fed to the SHA algorithm. The settings for the algorithm (padding, blocking, etc.) shall be described,

and the evaluator shall verify that these are supported by the selections in this component as well as the

selections concerning the hash function itself. The evaluator shall verify that the TSS contains a

description of how the output of the hash function is used to form the submask that will be input into

the function and is the same length as the DEK as specified in FCS_CKM_EXT.2.

For the NIST SP 800-132-based conditioning of the passphrase, the required assurance activities will be

performed when doing the assurance activities for the appropriate requirements (FCS_COP.1.1(4)). If

any manipulation of the key is performed in forming the submask that will be used to form the KEK, that

process shall be described in the TSS.

No explicit testing of the formation of the submask from the input password is required.

5.2.2.1.16 Extended: Initialization Vector Generation (FCS_IV_EXT.1)

The evaluator shall examine the key hierarchy section of the TSS to ensure that the encryption of all keys

is described and the formation of the IVs for each key encrypted by the same KEK meets FCS_IV_EXT.1.

5.2.2.1.17 Extended: Random Bit Generation (FCS_RBG_EXT.1)

Documentation shall be produced — and the evaluator shall perform the activities — in accordance with

Annex E.

The evaluator shall verify that the API documentation provided according to Section 6.2.1 includes the

security functions described in FCS_RBG_EXT.1.3.

The evaluator shall perform the following tests, depending on the standard to which the RBG conforms.

Implementations Conforming to FIP 140-2 Annex C

The reference for the tests contained in this section is The Random Number Generator Validation

System (RNGVS). The evaluators shall conduct the following two tests. Note that the "expected values"

are produced by a reference implementation of the algorithm that is known to be correct. Proof of

correctness is left to each Scheme.

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 62 of 156

The evaluators shall perform a Variable Seed Test. The evaluators shall provide a set of 128 (Seed, DT)

pairs to the TSF RBG function, each 128 bits. The evaluators shall also provide a key (of the length

appropriate to the AES algorithm) that is constant for all 128 (Seed, DT) pairs. The DT value is

incremented by 1 for each set. The seed values shall have no repeats within the set. The evaluators

ensure that the values returned by the TSF match the expected values.

The evaluators shall perform a Monte Carlo Test. For this test, they supply an initial Seed and DT value

to the TSF RBG function; each of these is 128 bits. The evaluators shall also provide a key (of the length

appropriate to the AES algorithm) that is constant throughout the test. The evaluators then invoke the

TSF RBG 10,000 times, with the DT value being incremented by 1 on each iteration, and the new seed for

the subsequent iteration produced as specified in NIST-Recommended Random Number Generator

Based on ANSI X9.31 Appendix A.2.4 Using the 3-Key Triple DES and AES Algorithms, Section 3. The

evaluators ensure that the 10,000th value produced matches the expected value.

Implementations Conforming to NIST Special Publication 800-90A

The evaluator shall perform 15 trials for the RNG implementation. If the RNG is configurable, the

evaluator shall perform 15 trials for each configuration. The evaluator shall also confirm that the

operational guidance contains appropriate instructions for configuring the RNG functionality.

If the RNG has prediction resistance enabled, each trial consists of (1) instantiate DRBG, (2) generate the

first block of random bits (3) generate a second block of random bits (4) uninstantiate. The evaluator

verifies that the second block of random bits is the expected value. The evaluator shall generate eight

input values for each trial. The first is a count (0 – 14). The next three are entropy input, nonce, and

personalization string for the instantiate operation. The next two are additional input and entropy input

for the first call to generate. The final two are additional input and entropy input for the second call to

generate. These values are randomly generated. ―generate one block of random bits‖ means to

generate random bits with number of returned bits equal to the Output Block Length (as defined in NIST

SP800-90A).

If the RNG does not have prediction resistance, each trial consists of (1) instantiate DRBG, (2) generate

the first block of random bits (3) reseed, (4) generate a second block of random bits (5) uninstantiate.

The evaluator verifies that the second block of random bits is the expected value. The evaluator shall

generate eight input values for each trial. The first is a count (0 – 14). The next three are entropy input,

nonce, and personalization string for the instantiate operation. The fifth value is additional input to the

first call to generate. The sixth and seventh are additional input and entropy input to the call to reseed.

The final value is additional input to the second generate call.

The following paragraphs contain more information on some of the input values to be

generated/selected by the evaluator.

 Entropy input: the length of the entropy input value must equal the seed length.

 Nonce: If a nonce is supported (CTR_DRBG with no Derivation Function does not use a nonce),

the nonce bit length is one-half the seed length.

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 63 of 156

 Personalization string: The length of the personalization string must be <= seed length. If the

implementation only supports one personalization string length, then the same length can be

used for both values. If more than one string length is support, the evaluator shall use

personalization strings of two different lengths. If the implementation does not use a

personalization string, no value needs to be supplied.

 Additional input: the additional input bit lengths have the same defaults and restrictions as the

personalization string lengths.

5.2.2.1.18 Extended: Cryptographic Algorithm Services (FCS_SRV_EXT.1)

The evaluator shall verify that the API documentation provided according to Section 6.2.1 includes the

security functions (cryptographic algorithms) described in these requirements.

The evaluator shall write, or the developer shall provide access to, an application that requests

cryptographic operations by the TSF. The evaluator shall verify that the results from the validation

match the expected results according to the API documentation. This application may be used to assist

in verifying the cryptographic operation assurance activities for the other algorithm services

requirements.

5.2.2.1.19 Extended: Cryptographic Key Storage (FCS_STG_EXT.1)

The assurance activity for this component entails examination of the ST‘s TSS to determine that the

TOE‘s implements the required secure key storage.

The evaluator shall review the AGD guidance to determine that it describes the steps needed to import

or destroy keys/secrets. The evaluator shall also verify that the API documentation provided according

to Section 6.2.1 includes the security functions (import, use, and destruction) described in these

requirements. The API documentation shall include the method by which applications restrict access to

their keys/secrets in order to meet FCS_STG_EXT.1.4.

The evaluator shall test the functionality of each security function:

Test 1: The evaluator shall import keys/secrets of each supported type according to the AGD guidance.

The evaluator shall write, or the developer shall provide access to, an application that generates a

key/secret of each supported type and calls the import functions. The evaluator shall verify that no

errors occur during import.

Test 2: The evaluator shall write, or the developer shall provide access to, an application that uses an

imported key/secret:

 For RSA, the secret shall be used to sign data.

In the future additional types will be required to be tested:

 For ECDSA, the secret shall be used to sign data

 For symmetric algorithms, the secret shall be used to encrypt data.

 For persistent secrets, the secret shall be compared to the imported secret.

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 64 of 156

The evaluator shall repeat this test with the application-imported keys/secrets and a different

application‘s imported keys/secrets. The evaluator shall verify that the TOE requires approval before

allowing the application to use the key/secret imported by the user or by a different application:

 The evaluator shall deny the approvals to verify that the application is not able to use the

key/secret as described.

 The evaluator shall repeat the test, allowing the approvals to verify that the application is able

to use the key/secret as described.

If the ST Author has selected “common application developer”, this test is performed by either using

applications from different developers or appropriately (according to API documentation) not

authorizing sharing.

Test 3: The evaluator shall destroy keys/secrets of each supported type according to the AGD guidance.

The evaluator shall write, or the developer shall provide access to, an application that destroys an

imported key/secret.

The evaluator shall repeat this test with the application-imported keys/secrets and a different

application‘s imported keys/secrets. The evaluator shall verify that the TOE requires approval before

allowing the application to destroy the key/secret imported by the administrator or by a different

application:

 The evaluator shall deny the approvals and verify that the application is still able to use the

key/secret as described.

 The evaluator shall repeat the test, allowing the approvals and verifying that the application is

no longer able to use the key/secret as described.

If the ST Author has selected “common application developer”, this test is performed by either using

applications from different developers or appropriately (according to API documentation) not

authorizing sharing.

Assurance Activity Note: The following tests require the developer to provide access to a test platform

that provides the evaluator with tools that are typically not found on consumer Mobile Device products.

Test 5: The evaluator shall enable encryption according to the AGD guidance. The evaluator shall use the

test outlined for FCS_CKM_EXT.4, destroy keys/secrets according to the AGD guidance provided for

FMT_SMF_EXT.1 and as defined in Test 1, Step 4 of the assurance activities specified following

FCS_CKM_EXT.4.

5.2.2.1.20 Extended: Encrypted Cryptographic Key Storage (FCS_STG_EXT.2)

The evaluator shall review the TSS to determine that the TSS includes key hierarchy description of the

protection of each DEK for data-at-rest, of software-based key storage, and of KEK related to the

protection of the DEKs and software-based key storage. This description must include a diagram

illustrating the key hierarchy implemented by the TOE in order to demonstrate that the implementation

meets FCS_STG_EXT.2. The description shall indicate how the functionality described by FCS_RBG_EXT.1

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 65 of 156

is invoked to generate DEKs (FCS_CKM_EXT.2), the key size (FCS_CKM_EXT.2 and FCS_CKM_EXT.3) for

each key, how each KEK is formed (generated, derived, or combined according to FCS_CKM_EXT.3), the

integrity protection method for each encrypted key (FCS_STG_EXT.3), and the IV generation for each key

encrypted by the same KEK (FCS_IV_EXT.1). More detail for each task follows the corresponding

requirement.

The evaluator shall examine the key hierarchy section of the TSS to ensure that each key (DEKs,

software-based key storage, and KEKs) is encrypted by keys of equal or greater security strength using

one of the selected modes.

The evaluator shall examine the key hierarchy description in the TSS section to verify that each DEK and

software-stored key is encrypted according to FCS_STG_EXT.2.

5.2.2.1.21 Extended: Integrity of Encrypted Key Storage (FCS_STG_EXT.3)

The evaluator shall examine the key hierarchy description in the TSS section to verify that each

encrypted key is integrity protected according to one of the options in FCS_STG_EXT.3.

5.2.2.1.22 Extended: EAP TLS Protocol (FCS_TLS_EXT.1)

The evaluator shall check the description of the implementation of this protocol in the TSS to ensure

that the ciphersuites supported are specified. The evaluator shall check the TSS to ensure that the

ciphersuites specified include those listed for this component. The evaluator shall also check the

operational guidance to ensure that it contains instructions on configuring the TOE so that TLS conforms

to the description in the TSS.

The evaluator shall check that the AGD guidance contains instructions for the administrator to configure

the list of Certificate Authorities that are allowed to sign certificates or to configure the FQDN of the

authentication server certificate that will be accepted by the TOE in the EAP-TLS exchange.

Additional tests may be added in the future to test compliance with RFC 5246. The evaluator shall also

perform the following tests:

 Test 1: The evaluator shall establish a TLS connection using each of the ciphersuites specified by

the requirement. This connection may be established as part of the establishment of a higher-

level protocol, e.g., as part of an EAP session. It is sufficient to observe the successful

negotiation of a ciphersuite to satisfy the intent of the test; it is not necessary to examine the

characteristics of the encrypted traffic in an attempt to discern the ciphersuite being used (for

example, that the cryptographic algorithm is 128-bit AES and not 256-bit AES).

 Test 2: The following test is repeated for each supported certificate signing algorithm supported.

The evaluator shall attempt to establish the connection using a server with a authentication

server certificate that contains the Server Authentication purpose in the extendedKeyUsage

field and verify that a connection is established. The evaluator will then verify that the client

rejects an otherwise valid server certificate that lacks the Server Authentication purpose in the

extendedKeyUsage field and a connection is not established. Ideally, the two certificates should

be identical except for the extendedKeyUsage field.

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 66 of 156

 Test 3: Following the guidance provided by the AGD guidance, a CA or an FQDN will be

configured as “acceptable” for authentication server certificates and then the evaluator will

start a wireless connection and verify that the wireless client is able to successfully connect. The

evaluator will then configure the system such that an otherwise valid certificate is signed by a

CA that is not allowed by the TOE or presents a FQDN that is not allowed by the TOE. Attempts

to authenticate to an authentication server presenting such a certificate should result in the

connection being refused. If the TOE supports both methods of limiting the acceptable

authentication servers, the evaluator shall repeat this test twice, once with each method.

 Test 4: The evaluator shall configure the authentication server to send a certificate in the TLS

connection that the does not match the server-selected ciphersuite (for example, send a ECDSA

certificate while using the TLS_RSA_WITH_AES_128_CBC_SHA ciphersuite or send a RSA

certificate while using one of the ECDSA ciphersuites.) The evaluator shall verify that the TOE

disconnects after receiving the server‘s Certificate handshake message.

 Test 5: The evaluator shall setup a man-in-the-middle tool between the TOE and the

authentication server and shall perform the following modifications to the traffic:

o Modify at least one byte in the server‘s nonce in the Server Hello handshake message,

and verify that the server denies the client‘s Finished handshake message.

o Modify the server‘s selected ciphersuite in the Server Hello handshake message to be a

ciphersuite not presented in the Client Hello handshake message. The evaluator shall

verify that the client rejects the connection after receiving the Server Hello.

o (conditional) If a DHE or ECDHE ciphersuite is supported, modify the signature block in

the Server‘s KeyExchange handshake message, and verify that the client rejects the

connection after receiving the Server KeyExchange.

o Modify a byte in a CA field in the Server‘s Certificate Request handshake message. The

modified CA field must not be the CA used to sign the client‘s certificate. The evaluator

shall verify that the server rejects the connection after receiving the Client Finished

handshake message.

o Modify a byte in the Server Finished handshake message, and verify that the client

sends a fatal alert upon receipt and does not send any application data.

5.2.2.1.23 Extended: TLS Protocol (FCS_TLS_EXT.2)

The evaluator shall check the description of the implementation of this protocol in the TSS to ensure

that the ciphersuites supported are specified. The evaluator shall check the TSS to ensure that the

ciphersuites specified include those listed for this component. The evaluator shall also check the

operational guidance to ensure that it contains instructions on configuring the TOE so that TLS conforms

to the description in the TSS.

The evaluator shall verify that the TSS describes how the DN in the certificate is compared to the

expected DN. If the DN is not compared automatically to the Domain Name or IP address, the evaluator

shall ensure that the AGD guidance includes configuration of the expected DN for the connection.

Additional tests may be added in the future to test compliance with RFC 5246. The evaluator shall also

perform the following tests:

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 67 of 156

 Test 1: The evaluator shall establish a TLS connection using each of the ciphersuites specified by

the requirement. This connection may be established as part of the establishment of a higher-

level protocol, e.g., as part of an EAP session. It is sufficient to observe the successful

negotiation of a ciphersuite to satisfy the intent of the test; it is not necessary to examine the

characteristics of the encrypted traffic in an attempt to discern the ciphersuite being used (for

example, that the cryptographic algorithm is 128-bit AES and not 256-bit AES).

 Test 2: The following test is repeated for each supported certificate signing algorithm supported.

The evaluator shall attempt to establish the connection using a server with a server certificate

that contains the Server Authentication purpose in the extendedKeyUsage field and verify that a

connection is established. The evaluator will then verify that the client rejects an otherwise valid

server certificate that lacks the Server Authentication purpose in the extendedKeyUsage field

and a connection is not established. Ideally, the two certificates should be identical except for

the extendedKeyUsage field.

 Test 3: The evaluator shall attempt a connection with a certificate where the DN matches either

the configured expected DN or the Domain Name/IP address of the peer. The evaluator shall

verify that the TSF is able to successfully connect. The evaluator shall attempt a connection with

a certificate where the DN does not match either the configured expected DN or the Domain

Name/IP address of the peer. The evaluator shall verify that the TSF is not able to successfully

connect.

 Test 4: The evaluator shall configure the server to send a certificate in the TLS connection that

the does not match the server-selected ciphersuite (for example, send a ECDSA certificate while

using the TLS_RSA_WITH_AES_128_CBC_SHA ciphersuite or send a RSA certificate while using

one of the ECDSA ciphersuites.) The evaluator shall verify that the TOE disconnects after

receiving the server‘s Certificate handshake message.

 Test 5: The evaluator shall setup a man-in-the-middle tool between the TOE and the server and

shall perform the following modifications to the traffic:

o Modify at least one byte in the server‘s nonce in the Server Hello handshake message,

and verify that the server denies the client‘s Finished handshake message.

o Modify the server‘s selected ciphersuite in the Server Hello handshake message to be a

ciphersuite not presented in the Client Hello handshake message. The evaluator shall

verify that the client rejects the connection after receiving the Server Hello.

o (conditional) If a DHE or ECDHE ciphersuite is supported, modify the signature block in

the Server‘s KeyExchange handshake message, and verify that the client rejects the

connection after receiving the Server KeyExchange.

o Modify a byte in a CA field in the Server‘s Certificate Request handshake message. The

modified CA field must not be the CA used to sign the client‘s certificate. The evaluator

shall verify that the server rejects the connection after receiving the Client Finished

handshake message.

o Modify a byte in the Server Finished handshake message, and verify that the client

sends a fatal alert upon receipt and does not send any application data.

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 68 of 156

5.2.2.1.24 Extended: HTTPS Protocol (FCS_HTTPS_EXT.1)

The evaluator shall check the TSS to ensure that it is clear on how HTTPS uses TLS to establish an

administrative session, focusing on any client authentication required by the TLS protocol vs. security

administrator authentication which may be done at a different level of the processing stack. Testing for

this activity is done as part of the TLS testing; this may result in additional testing if the TLS tests are

done at the TLS protocol level.

5.2.2.2 User Data Protection

5.2.2.2.1 Extended: Security Attribute Based Access Control (FDP_ACF_EXT.1)

The evaluator shall ensure the TSS lists all system services available for use by an application. The

evaluator shall also ensure that the TSS describes how applications interface with these system services,

and means by which these system services are protected by the TSF.

The TSS shall describe which of the following categories each system service falls in:

1) No applications are allowed access

2) Privileged applications are allowed access

3) Applications are allowed access by user authorization

4) All applications are allowed access

Privileged applications include any applications developed by the TSF developer. The TSS shall describe

how privileges are granted to third-party applications. For both types of privileged applications, the TSS

shall describe how and when the privileges are verified and how the TSF prevents unprivileged

applications from accessing those services.

For any services for which the user may grant access, the evaluator shall ensure that the TSS identifies

whether the user is prompted for authorization when the application is installed, or during runtime.

Assurance Activity Note: The following tests require the vendor to provide access to a test platform that

provides the evaluator with tools that are typically not found on consumer Mobile Device products.

The evaluator shall write, or the developer shall provide, applications for the purposes of the following

tests.

Test 1: For each system service to which no applications are allowed access, the evaluator shall attempt

to access the system service with a test application and verify that the application is not able to access

that system service.

Test 2: For each system service to which only privileged applications are allowed access, the evaluator

shall attempt to access the system service with an unprivileged application and verify that the

application is not able to access that system service. The evaluator shall attempt to access the system

service with a privileged application and verify that the application can access the service.

Test 3: For each system service to which the user may grant access, the evaluator shall attempt to access

the system service with a test application. The evaluator shall ensure that either the system blocks such

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 69 of 156

accesses or prompts for user authorization. The prompt for user authorization may occur at runtime or

at installation time, and should be consistent with the behavior described in the TSS.

Test 4: For each system service listed in the TSS that is accessible by all applications, the evaluator shall

test that an application can access that system service.

5.2.2.2.2 Extended: Data at Rest Protection (FDP_DAR_EXT.1)

The evaluator shall verify that the TSS section of the ST indicates which data is protected by the DAR

implementation and what data is considered TSF data. The evaluator shall ensure that this data includes

all protected data.

The evaluator shall review the AGD guidance to determine that the description of the configuration and

use of the DAR protection does not require the user to perform any actions beyond configuration and

providing the authentication credential. The evaluator shall also review the AGD guidance to determine

that the configuration does not require the user to identify encryption on a per-file basis.

Assurance Activity Note: The following test require the developer to provide access to a test platform

that provides the evaluator with tools that are typically not found on consumer Mobile Device products.

Test 1: The evaluator shall enable encryption according to the AGD guidance. The evaluator shall create

user data (non-system) either by creating a file or by using an application. The evaluator shall use a tool

provided by the developer to verify that this data is encrypted when the product is powered off, in

conjunction with Test 1 for FIA_UAU_EXT.1.

5.2.2.2.3 Extended: Sensitive Data Encryption (FDP_DAR_EXT.2)

The evaluator shall verify that the TSS includes a description of which data stored by the TSF (such as by

native applications) is treated as sensitive. This data may include all or some user or enterprise data and

must be specific regarding the level of protection of email, contacts, calendar appointments, messages,

and documents.

The evaluator shall examine the TSS to determine that it describes the mechanism that is provided for

applications to use to mark data and keys as sensitive. This description shall also contain information

reflecting how data and keys marked in this manner are distinguished from data and keys that are not

(for instance, tagging, segregation in a "special" area of memory or container, etc.).

Test 1: The evaluator shall enable encryption of sensitive data and require user authentication according

to the AGD guidance. The evaluator shall try to access and create sensitive data (as defined in the ST and

either by creating a file or using an application to generate sensitive data) in order to verify that no

other user interaction is required.

The evaluator shall review the TSS section of the ST to determine that the TSS includes a description of

the process of receiving sensitive data while the device is in a locked state. The evaluator shall also verify

that the description indicates if sensitive data that may be received in the locked state is treated

differently than sensitive data that cannot be received in the locked state. The description shall include

the key scheme for encrypting and storing the received data, which must involve an asymmetric key and

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 70 of 156

must prevent the sensitive data-at-rest from being decrypted by wiping all key material used to derive

or encrypt the data (as described in the application note). The introduction to this section provides two

different schemes that meet the requirements, but other solutions may address this requirement.

The evaluator shall perform the tests in FCS_CKM_EXT.4 for all key material no longer needed while in

the locked state and shall ensure that keys for the asymmetric scheme are addressed in the tests

performed when transitioning to the locked state.

The evaluator shall verify that the key hierarchy section of the TSS required for FCS_STG_EXT.2 includes

the symmetric encryption keys (DEKs) used to encrypt sensitive data. The evaluator shall ensure that

these DEKs are encrypted by a key encrypted with (or chain to a KEK encrypted with) the REK and

password-derived KEK.

The evaluator shall verify that the TSS section of the ST that describes the asymmetric key scheme

includes the protection of any private keys of the asymmetric pairs. The evaluator shall ensure that any

private keys that are not wiped and are stored by the TSF are stored encrypted by a key encrypted with

(or chain to a KEK encrypted with) the REK and password-derived KEK.

The evaluator shall verify that the TSS section of the ST that describes the asymmetric key scheme

includes a description of the actions taken by the TSF for the purposes of DAR upon transitioning to the

unlocked state. These actions shall minimally include decrypting all received data using the asymmetric

key scheme and re-encrypting with the symmetric key scheme used to store data while the device is

unlocked.

5.2.2.2.4 Extended: Certificate Data Storage (FDP_STG_EXT.1)

The evaluator shall ensure the TSS describes the Trust Anchor Database implemented that contain

certificates used to meet the requirements of this PP. This description shall contain information

pertaining to how certificates are loaded into the store, and how the store is protected from

unauthorized access (for example, unix permissions) in accordance with the permissions established in

FMT_SMF.1, FMT_MOF.1(1), and FMT_MOF.1(2).

5.2.2.3 Identification and Authentication

5.2.2.3.1 Extended: Authorization Failure Handling (FIA_AFL_EXT.1)

The evaluator shall ensure that the TSS describes that a value corresponding to the number of

unsuccessful authentication attempts since the last successful authentication is kept for each user. The

evaluator shall verify that the AGD guidance describes how the administrator configures the maximum

number of unsuccessful authentication attempts and the remediation action to be performed when that

maximum is met or surpassed.

Test 1: The evaluator shall configure according to the AGD guidance the device with a maximum number

of unsuccessful authentication attempts and with a remediation action to be performed when that

maximum is met or surpassed. The evaluator shall enter the locked state and enter incorrect passwords

until the remediation action occurs. The evaluator shall verify that the number of password entries

corresponds to the configured maximum and that the remediation action is implemented.

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 71 of 156

5.2.2.3.2 Extended: Bluetooth Authentication (FIA_BLT_EXT.1)

The evaluator shall ensure that the TSS describes how data transfer is prevented before the Bluetooth

pairing is completed. The TSS shall specifically call out any supported OBEX data transfer mechanisms.

The evaluator shall ensure that the OBEX transfers are only completed after the Bluetooth devices are

paired.

5.2.2.3.3 Extended: PAE Authentication (FIA_PAE_EXT.1)

The evaluator shall perform the following tests:

 Test 1: The evaluator shall demonstrate that the TOE has no access to the test network. After

successfully authenticating with an authentication server through a wireless access system, the

evaluator shall demonstrate that the TOE does have access to the test network.

 Test 2: The evaluator shall demonstrate that the TOE has no access to the test network. The

evaluator shall attempt to authenticate using an invalid client certificate, such that the EAP-TLS

negotiation fails. This should result in the TOE still being unable to access the test network.

 Test 3: The evaluator shall demonstrate that the TOE has no access to the test network. The

evaluator shall attempt to authenticate using an invalid authentication server certificate, such

that the EAP-TLS negotiation fails. This should result in the TOE still being unable to access the

test network.

5.2.2.3.4 Extended: Password Management (FIA_PMG_EXT.1)

The evaluator shall examine the operational guidance to determine that it provides guidance to security

administrators on the composition of strong passwords, and that it provides instructions on setting the

minimum password length. The evaluator shall also perform the following tests. Note that one or more

of these tests can be performed with a single test case.

Test 1: The evaluator shall compose passwords that either meet the requirements, or fail to meet the

requirements, in some way. For each password, the evaluator shall verify that the TOE supports the

password. While the evaluator is not required (nor is it feasible) to test all possible compositions of

passwords, the evaluator shall ensure that all characters, rule characteristics, and a minimum length

listed in the requirement are supported, and justify the subset of those characters chosen for testing.

5.2.2.3.5 Extended: Authorization Throttling (FIA_TRT_EXT.1)

The evaluator shall verify that the TSS describes the method by which authentication attempts are not

able to be automated. The evaluator shall ensure that the TSS describes either how the TSF disables

authentication via external interfaces (other than the ordinary user interface) or how authentication

attempts are delayed in order to slow automated entry and shall ensure that this delay totals at least

500 milliseconds over 10 attempts.

5.2.2.3.6 Protected Authorization Feedback (FIA_UAU.7)

The evaluator shall ensure that the TSS describes the means of obscuring the password entry. The

evaluator shall verify that any configuration of this requirement is addressed in the AGD guidance and

that the password is obscured by default.

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 72 of 156

Test: The evaluator shall enter passwords on the device, including at least the Password Authentication

Factor at lockscreen, and verify that the password is not displayed on the device.

5.2.2.3.7 Extended: Authentication for Cryptographic Operation (FIA_UAU_EXT.1)

The evaluator shall verify that the TSS section of the ST describes the process for decrypting protected

data and keys. The evaluator shall ensure that this process requires the user to enter a Password

Authentication Factor and, in accordance with FCS_CKM_EXT.3, derives a KEK which is used to protect

the software-based secure key storage and (optionally) DEK(s) for sensitive data, in accordance with

FCS_STG_EXT.2.

The following tests may be performed in conjunction with FDP_DAR_EXT.1.

Assurance Activity Note: The following test require the developer to provide access to a test platform

that provides the evaluator with tools that are typically not found on consumer Mobile Device products.

Test 1: The evaluator shall enable encryption of protected data and require user authentication

according to the AGD guidance. The evaluator shall write, or the developer shall provide access to, an

application that includes a unique string treated as protected data.

The evaluator shall reboot the device, use a tool provided by developer to search for the unique string

amongst the application data, and verify that the unique string cannot be found. The evaluator shall

enter the Password Authentication Factor to access full device functionality, use a tool provided by

developer to search for the unique string amongst the application data, and verify that the unique string

can be found.

Test 2: [conditional] The evaluator shall require user authentication according to the AGD guidance. The

evaluator shall write, or the developer shall provide access to, an application that generates and stores a

key in the software-based secure key storage.

The evaluator shall lock the device, use a tool provided by developer to search for the key amongst the

application data, and verify that the key cannot be found. The evaluator shall enter the Password

Authentication Factor to access full device functionality, use a tool provided by developer to search for

the key amongst the application data, and verify that the unique string can be found.

Test 3: [conditional] The evaluator shall enable encryption of sensitive data and require user

authentication according to the AGD guidance. The evaluator shall write, or the developer shall provide

access to, an application that includes a unique string treated as sensitive data (this may be data or a

key).

The evaluator shall lock the device, use a tool provided by developer to search for the unique string

amongst the application data, and verify that the unique string cannot be found. The evaluator shall

enter the Password Authentication Factor to access full device functionality, use a tool provided by

developer to search for the unique string amongst the application data, and verify that the unique string

can be found.

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 73 of 156

5.2.2.3.8 Extended: Timing of Authentication (FIA_UAU_EXT.2)

The evaluator shall verify that the TSS describes the actions allowed by unauthorized users in the locked

state. The evaluator shall attempt to perform some actions not listed in the selection while the device is

in the locked state and verify that those actions do not succeed.

5.2.2.3.9 Extended: Re-Authorizing (FIA_UAU_EXT.3)

Test 1: The evaluator shall configure the TSF to use the Password Authentication Factor according to the

AGD guidance. The evaluator shall change Password Authentication Factor according to the AGD

guidance and verify that the TSF requires the entry of the Password Authentication Factor before

allowing the factor to be changed.

Test 2: The evaluator shall configure the TSF to transition to the locked state after a time of inactivity

(FMT_SMF.1) according to the AGD guidance. The evaluator shall wait until the TSF locks and then verify

that the TSF requires the entry of the Password Authentication Factor before transitioning to the

unlocked state.

Test 3: The evaluator shall configure user-initiated locking according to the AGD guidance. The evaluator

shall lock the TSF and then verify that the TSF requires the entry of the Password Authentication Factor

before transitioning to the unlocked state.

5.2.2.3.10 Extended: Validation of Certificates (FIA_X509_EXT.1)

The evaluator shall ensure the TSS describes where the check of validity of the certificates takes place.

The evaluator ensures the TSS also provides a description of the certificate path validation algorithm.

The tests described must be performed in conjunction with the other Certificate Services assurance

activities, including the use cases in FIA_X509_EXT.2.1 and FIA_X509_EXT.3. The tests for the

extendedKeyUsage rules are performed in conjunction with the uses that require those rules.

Test 1: The evaluator shall demonstrate that validating a certificate without a valid certification path

results in the function (application validation, trusted channel setup, or trusted software update) failing.

The evaluator shall then load a certificate or certificates needed to validate the certificate to be used in

the function, and demonstrate that the function succeeds. The evaluator then shall delete one of the

certificates, and show that the function fails.

Test 2: The evaluator shall demonstrate that validating an expired certificate results in the function

failing.

Test 3: The evaluator shall test that the TOE can properly handle revoked certificates – conditional on

whether CRL or OCSP is selected; if both are selected, and then a test is performed for each method. The

evaluator has to only test one up in the trust chain (future revisions may require to ensure the validation

is done up the entire chain). The evaluator shall ensure that a valid certificate is used, and that the

validation function succeeds. The evaluator then attempts the test with a certificate that will be revoked

(for each method chosen in the selection) to ensure when the certificate is no longer valid that the

validation function fails.

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 74 of 156

Test 4: The evaluator shall construct a certificate path, such that the certificate of the CA issuing the

TOE‘s certificate does not contain the basicConstraints extension. The validation of the certificate path

fails.

Test 5: The evaluator shall construct a certificate path, such that the certificate of the CA issuing the

TOE‘s certificate has the cA flag in the basicConstraints extension not set. The validation of the

certificate path fails.

Test 6: The evaluator shall construct a certificate path, such that the certificate of the CA issuing the

TOE‘s certificate has the cA flag in the basicConstraints extension set to TRUE. The validation of the

certificate path succeeds.

5.2.2.3.11 Extended: X.509 Certificate Authentication (FIA_X509_EXT.2)

The evaluator shall check the TSS to ensure that it describes how the TOE chooses which certificates to

use, and any necessary instructions in the administrative guidance for configuring the operating

environment so that the TOE can use the certificates.

The evaluator shall examine the TSS to confirm that it describes the behavior of the TOE when a

connection cannot be established during the validity check of a certificate used in establishing a trusted

channel. If the requirement that the administrator is able to specify the default action, then the

evaluator shall ensure that the operational guidance contains instructions on how this configuration

action is performed.

The evaluator shall perform Test 1 for each function listed in FIA_X509_EXT.2.1 that requires the use of

certificates:

Test 1: The evaluator shall demonstrate that using a certificate without a valid certification path results

in the function failing. Using the administrative guidance, the evaluator shall then load a certificate or

certificates needed to validate the certificate to be used in the function, and demonstrate that the

function succeeds. The evaluator then shall delete one of the certificates, and show that the function

fails.

Test 2: The evaluator shall demonstrate that using a valid certificate that requires certificate validation

checking to be performed in at least some part by communicating with a non-TOE IT entity. The

evaluator shall then manipulate the environment so that the TOE is unable to verify the validity of the

certificate, and observe that the action selected in FIA_X509_EXT.2.2 is performed. If the selected action

is administrator-configurable, then the evaluator shall follow the operational guidance to determine

that all supported administrator-configurable options behave in their documented manner.

The assurance activity for FIA_X509_EXT.2.4 this requirement is performed in conjunction with the

assurance activity for FIA_X509_EXT.2.1 and FIA_X509_EXT.2.2.

For FIA_X509_EXT.2.5 the evaluator shall check to ensure that the operational guidance contains

instructions on generating a Certificate Request Message. The evaluator shall also perform the following

test.

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 75 of 156

Test 1: The evaluator shall use the operational guidance to cause the TOE to generate a certificate

request message. The evaluator shall confirm that they are able to provide the public key, Common

Name, Organization, Organizational Unit, and Country as input into this request. The evaluator shall

capture the generated message and ensure that it conforms with the format specified by RFC 2986.

5.2.2.3.12 Extended: Request Validation of Certificates (FIA_X509_EXT.3)

The evaluator shall verify that the API documentation provided according to Section 6.2.1 includes the

security function (certificate validation) described in this requirement. This documentation shall be clear

as to which results indicate success and failure.

The evaluator shall write, or the developer shall provide access to, an application that requests

certificate validation by the TSF. The evaluator shall verify that the results from the validation match the

expected results according to the API documentation. This application may be used to verify that import,

removal, modification, and validation are performed correctly according to the tests required by

FDP_STG_EXT.1, FDP_ITC_EXT.1, FMT_SMF.1.1 function 14, and FIA_X509_EXT.1.

5.2.2.4 Security Management

5.2.2.4.1 Management of Security Functions Behavior by the User (FMT_MOF.1(USER))

The evaluation shall verify that the TSS describes those management functions which may only be

performed by the user in conjunction with the TSS description for FMT_SMF.1.

5.2.2.4.2 Management of Security Functions Behavior by the Organization (FMT_MOF.1(ORG))

Test 1: The evaluator shall use the test environment to deploy policies to mobile devices.

Test 2: The evaluator shall create policies which collectively include all management functions which are

controlled by the (enterprise) administrator and cannot be overridden by the user as defined in

FMT_MOF.1.1(2). The evaluator shall apply these policies to devices, attempt to override each setting as

the user, and ensure that the TSF does not permit it.

5.2.2.4.3 Specifications of Management Functions (FMT_SMF.1)

The following activities shall take place in the test environment described in the Assurance Activity for

FPT_TUD_EXT.1.1, FPT_TUD_EXT.1.2, FPT_TUD_EXT.1.3, and FPT_TUD_EXT.1.4. The evaluator shall

consult the AGD guidance to perform each of the following tests, iterating each test as necessary if both

the user and administrator may perform the function. The following test numbers correspond to the

function numbers.

Test 1: The evaluator shall exercise the TSF configuration as the administrator and perform positive and

negative tests, with at least two assignments for each variable setting, for each of the following:

 minimum password length

 minimum password complexity

 maximum password lifetime

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 76 of 156

Test 2: The evaluator shall exercise the TSF configuration as the user and the administrator. The

evaluator shall perform positive and negative tests, with at least two assignments for each variable

setting, for each of the following.

 screen-lock enabled/disabled

 screen lock timeout

 number of authentication failures (may be combined with test for FIA_AFL.1)

Test 3: The evaluator shall exercise the TSF configuration to enable the VPN protection. These

configuration actions must be used for the testing of the FDP_IFC.1.1 requirement.

Test 4: The evaluator shall exercise the TSF configuration as both the user and administrator to enable

and disable the state of each radio (e.g. Wi-Fi, GPS, cellular, NFC, Bluetooth) listed by the ST author. For

each radio, the evaluator shall use a spectrum analyzer and a RF- shielded environment to verify the

existence of signals when the radio is enabled and the absence of signals when the radio is disabled. The

evaluator shall verify the absence of signals during device reboot and casual usage.

Test 5: The evaluator shall exercise the TSF configuration as both the user and administrator to enable

and disable the state of each audio or visual collection devices (e.g. camera, microphone) listed by the

ST author. For each collection device, the evaluator shall disable the device and then attempt to use its

functionality.

Test 6: The evaluator shall create a test environment consisting of a wireless access system and an

authentication server for the purpose of tests 6 and 7. The evaluator shall specify the wireless network

and wireless network settings according to the AGD guidance both as an administrator and as a user.

The evaluator shall specify a value for each management function according to the configuration of the

test network. Minimally, the evaluator shall test a WPA2 Enterprise network using EAP-TLS. The

evaluator shall verify that the TSF can establish a connection to the network.

Test 7: The evaluator shall specify a wireless network with an incorrect value for WLAN authentication

server and verify that the mobile device cannot connect to the WLAN. The evaluator shall repeat this

test, setting incorrect values for the security type and authentication protocol individually and verify

that the mobile device cannot connect to the WLAN.

Test 8 & 9: The evaluator shall use the test environment to instruct the TSF, as the administrator, to

command the device to:

 transition to a locked state

 perform a wipe of all data

The evaluator must ensure that the device transitions to the locked state upon command. The evaluator

must ensure that this management setup is used when conducting the assurance activities in

FCS_CKM_EXT.5.

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 77 of 156

Test 10: The evaluator shall exercise the TSF configuration as the administrator to restrict particular

applications, sources of applications, or application installation according to the AGD guidance. The

evaluator shall attempt to install denied applications and ensure that this is not possible.

Test 11 & 12: The test of these functions is performed in association with FCS_STG_EXT.1.

Test 13: The evaluator shall review the AGD guidance to determine that it describes the steps needed to

import, modify, or remove certificates in the Trust Anchor database. The evaluator shall import

certificates according to the AGD guidance as the user or as the administrator. The evaluator shall verify

that no errors occur during import.

Test 14: The evaluator shall remove an administrator-imported certificate and any other categories of

certificates included in the assignment of function 15 from the Trust Anchor Database according to the

AGD guidance as the user and as the administrator.

Test 15: The evaluator shall verify that user approval is required to enroll the device into management

and includes a description of each type of management function that will be enforced.

Test 16: The evaluator shall attempt to remove applications according to the AGD guidance and verify

that the TOE no longer permits users to access those applications or their associated data.

Test 17 & 18: The evaluator shall attempt to update the TSF system software (if updates are available)

and install mobile applications and verify that updates correctly install and that the version numbers of

the system software and of the mobile applications increase.

Test 19: [conditional] The evaluator shall exercise the TSF configuration to enable and disable data

transfer capabilities over each externally accessible hardware ports (e.g. USB, SD card, HDMI) listed by

the ST author. The evaluator shall use test equipment for the particular interface to ensure that no low-

level signalling is occurring on all pins used for data transfer when they are disabled.

Test 20: [conditional] The evaluator shall attempt to disable each listed protocol in the assignment,

which should include tethering uses. The evaluator shall verify that remote devices can no longer access

the TOE or TOE resources using any disabled protocols.

Test 21: [conditional] The evaluator shall exercise the TSF configuration as both the user and

administrator to enable and disable any developer mode. The evaluator shall test that developer mode

access is not available when its configuration is disabled. The evaluator shall verify the developer mode

remains disabled during device reboot.

Test 22, 23, & 24: [conditional] The evaluator shall exercise the TSF configuration as both the user and

administrator to enable system-wide data-at-rest protection according to the AGD guidance. The

evaluator shall ensure that all assurance activities for DAR (see Section 5.3.2) are conducted with the

device in this configuration. The evaluator shall disable any “Forgot Password” feature and ensure that

the device does not offer any password hints.

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 78 of 156

Test 25: [conditional]: The evaluator shall establish an APN for the test network, configure the private

APN onto the device. The evaluator shall then send packets to the publically routable Internet (perhaps

using a tool provided by the developer). The evaluator shall observe that these packets are reaching the

APN termination point and not arriving via the carrier‘s internet access gateway. The evaluator shall

repeat the test with a different or invalid APN on the device, and verify that the packets do not reach

the APN termination point.

Test 26: [conditional] The evaluator shall disable the Discoverable mode and verify that no new

Bluetooth peripherals can connect to the device. The evaluator shall disallow each Bluetooth version

and attempt to connect a Bluetooth peripheral to the device. The evaluator shall verify with a Bluetooth

protocol analysis tool that the TOE does not perform disabled versions or list the disabled versions as

supported by the TOE during pairing negotiations with a Bluetooth peripheral. The evaluator shall,

according to the selection, restrict which pairing mechanisms are allowed by the TOE (via Bluetooth

profiles or particular pairing protocols). The evaluator shall verify with a Bluetooth protocol analysis tool

that the TOE does not perform disabled pairing mechanism or list the disabled mechanism as supported

by the TOE during pairing negotiations with a Bluetooth peripheral.

Test 27: [conditional] For each category of information listed in the AGD guidance, the evaluator shall

verify that when that TSF is configured to limit the information according to the AGD, the information is

no longer displayed in the locked state.

Test 28: [conditional] The evaluator shall attempt to wipe sensitive data resident on the device

according to the administrator guidance. The evaluator shall verify that the data is no longer accessible

by the user.

Test 29: [conditional] The evaluator shall configure the device to alert the administrator according to the

administrator guidance (for example, by configuring a trigger that causes an alert to the MDM). The

evaluator shall verify that the administrator receives an alert for the device.

Test 30: [conditional] The evaluator shall attempt to remove any Enterprise applications from the device

by following the administrator guidance. The evaluator shall verify that the TOE no longer permits users

to access those applications or their associated data.

Test 31: [conditional] The evaluator shall also verify that the API documentation provided according to

Section 6.2.132 includes any security functions (import, modification, or destruction of the Trust Anchor

Database) allowed by applications.

If applications may import certificates to the Trust Anchor Database. The evaluator shall write, or the

developer shall provide access to, an application that imports a certificate into the Trust Anchor

Database. The evaluator shall verify that the TOE requires approval before allowing the application to

import the certificate:

32

 This is the plaintext storage requirement (FPT_KST_EXT.1).

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 79 of 156

 The evaluator shall deny the approvals to verify that the application is not able to import the

certificate. Failure of import shall be tested by attempting to validate a certificate that chains to

the certificate whose import was attempted (as described in the Assurance Activity for

FIA_X509_EXT.1).

 The evaluator shall repeat the test, allowing the approval to verify that the application is able to

import the certificate and that validation occurs.

If applications may remove certificates in the Trust Anchor Database, the evaluator shall write, or the

developer shall provide access to, an application that removes certificates from the Trust Anchor

Database. The evaluator shall verify that the TOE requires approval before allowing the application to

remove the certificate:

 The evaluator shall deny the approvals to verify that the application is not able to remove the

certificate. Failure of removal shall be tested by attempting to validate a certificate that chains

to the certificate whose removal was attempted (as described in the Assurance Activity for

FIA_X509_EXT.1).

The evaluator shall repeat the test, allowing the approval to verify that the application is able to

remove/modify the certificate and that validation no longer occurs.

Test 32: [conditional] The test of this function is performed in conjunction with FIA_X509_EXT.2.2.

Test 33: [conditional] The evaluator shall attempt to disable all cellular voice functionality according to

the administrator guidance. The evaluator shall then attempt to place a call on the TOE as the user and

verify that the function fails. The evaluator shall also attempt to call the TOE and verify that the call

cannot be completed.

Test 34: [conditional] The evaluator shall attempt to disable all device messaging functionality according

to the administrator guidance. The evaluator shall then attempt to send a message on the TOE as the

user and verify that the function fails. The evaluator shall also attempt to send a message to the TOE

and verify that the message is not received.

Test 35: [conditional] The evaluator shall attempt to disable each cellular protocol according to the

administrator guidance. The evaluator shall attempt to connect the device to a cellular network and,

using network analysis tools, verify that the device does not allow negotiation of the disabled protocols.

Test 36: [conditional] The evaluator shall attempt to disable voice control functionality and shall verify

that the TOE no longer performs any actions upon being given a voice command.

Test 37: [conditional] The evaluator shall attempt to read any device audit logs according to the

administrator guidance and verify that the logs may be read. This test may be performed in conjunction

with the assurance activity of FAU_GEN.1.

Test 38: [conditional] The test of this function is performed in conjunction with FPT_TUD_EXT.2.5.

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 80 of 156

Test 39 & 40: [conditional] The test of these functions is performed in conjunction with FCS_STG_EXT.1.

Test 41: [conditional] The test of this function is performed in conjunction with FTA_TAB.1.

5.2.2.4.4 Extended: Specification of Remediation Actions (FMT_SMF_EXT.1)

The evaluator shall use the test environment to iteratively configure the device to perform each

remediation action in the selection upon unenrollment. The evaluator shall unenroll the device

according to AGD guidance and verify that the remediation action configured is performed.

5.2.2.5 Protection of the TSF

5.2.2.5.1 Extended: Anti-Exploitation Services for Address Space Layout Randomization

(FPT_AEX_EXT.1)

The evaluator shall ensure that the TSS section of the ST describes how the 8 bits are generated and

provides a justification as to why those bits are unpredictable.

Assurance Activity Note: The following test require the developer to provide access to a test platform

that provides the evaluator with tools that are typically not found on consumer Mobile Device products.

Test 1: The evaluator shall select 3 apps included with the TSF. These must include any web browser or

mail client included with the TSF. For each of these apps, the evaluator will launch the same app on two

separate mobile devices of the same type and compare all memory mapping locations. The evaluator

must ensure that no memory mappings are placed in the same location on both devices.

If the rare (at most 1/256) chance occurs that two mappings are the same for a single app and not the

same for the other two apps, the evaluator shall repeat the test with that app to verify that in the

second test the mappings are different.

For FPT_AEX_EXT.1.3 and FPT_AEX_EXT.1.3, the evaluator shall ensure that the TSS section of the ST

describes how the 4 bits are generated and provides a justification as to why those bits are

unpredictable.

Assurance Activity Note: The following test require the developer to provide access to a test platform

that provides the evaluator with tools that are typically not found on consumer Mobile Device products.

Test 1: The evaluator shall reboot the TOE at least five times. For each of these reboots, the evaluator

shall examine memory mapping locations of the kernel. The evaluator must ensure that no memory

mappings are placed in the same location on both devices.

5.2.2.5.2 Extended: Anti-Exploitation Services for Memory Page Permissions (FPT_AEX_EXT.2)

The evaluator shall ensure that the TSS describes of the memory management unit (MMU), and ensures

that this description documents the ability of the MMU to enforce read, write, and execute permissions

on all pages of virtual memory.

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 81 of 156

For FPT_AEX_EXT.2.2, the evaluator shall ensure that the TSS describes of the memory management

unit (MMU), and ensures that this description documents the ability of the MMU to enforce write XOR

execute permissions.

5.2.2.5.3 Extended: Anti-Exploitation Services for Stack Overflow Protection (FPT_AEX_EXT.3)

The evaluator shall determine that the TSS contains a description of stack-based buffer overflow

protections implemented in the TSF software which runs in the non-privileged execution mode of the

application processor. The exact implementation of stack-based buffer overflow protection will vary by

platform. Example implementations may be activated through compiler options such as "-fstack-

protector-all", “-fstack-protector”, and ”GS” flags. The evaluator shall ensure that the TSS contains an

inventory of TSF binaries and libraries, indicating those that implement stack-based buffer overflow

protections as well as those that do not. The TSS must provide a rationale for those binaries and libraries

that are not protected in this manner.

5.2.2.5.4 Extended: Domain Isolation (FPT_AEX_EXT.4)

The evaluator shall ensure that the TSS describes the mechanisms that are in place that prevents non-

TSF software from modifying the TSF software or TSF data that governs the behavior of the TSF. These

mechanisms could range from hardware-based means (e.g. “execution rings” and memory management

functionality); to software-based means (e.g. boundary checking of inputs to APIs). The evaluator

determines that the described mechanisms appear reasonable to protect the TSF from modification.

The evaluator shall ensure the TSS describes how the TSF ensures that the address spaces of

applications are kept separate from one another.

Assurance Activity Note: The following tests require the vendor to provide access to a test platform that

provides the evaluator with tools that are typically not found on consumer Mobile Device products. In

addition, the vendor provides a list of files (e.g., system files, libraries, configuration files) that make up

the TSF. This list could be organized by folders/directories (e.g., /usr/sbin, /etc), as well as individual files

that may exist outside of the identified directories.

Test 1: The evaluator shall check the “permission settings” for each file in vendor provided list of files

that make up the TSF and ensure the settings are appropriate for preventing writing by untrusted

applications. The evaluator shall attempt to modify a file of their choosing to ensure the mechanism

enforces the permission settings and prevents modification.

Test 2: The evaluator shall create and load an app onto the mobile device. This app shall attempt to

traverse over all file systems and report any locations to which data can be written or overwritten. The

evaluator must ensure that none of these locations are part of the OS software, device drivers, system

and security configuration files, key material, or another application‘s image/data.

5.2.2.5.5 Extended: Plaintext Key Storage (FPT_KST_EXT.1)

The evaluator shall consult the TSS section of the ST in performing the assurance activities for this

requirement.

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 82 of 156

In performing their review, the evaluator shall determine that the TSS contains a description of the

activities that happen on power-up and password authentication relating to the decryption of DEKs,

stored keys, and data.

The evaluator shall ensure that the description also covers how the cryptographic functions in the FCS

requirements are being used to perform the encryption functions, including how the KEKs, DEKs, and

stored keys are unwrapped, saved, and used by the TOE so as to prevent plaintext from being written to

non-volatile storage. The evaluator shall ensure that the TSS describes, for each power-down scenario

how the TOE ensures that all keys in non-volatile storage are wrapped with a KEK.

The evaluator shall ensure that the TSS describes how other functions available in the system (e.g.,

regeneration of the keys) ensure that no unencrypted key material is present in persistent storage.

The evaluator shall review the TSS to determine that it makes a case that key material is not written

unencrypted to the persistent storage.

5.2.2.5.6 Extended: No Key Transmission (FPT_KST_EXT.2)

The evaluator shall consult the TSS section of the ST in performing the assurance activities for this

requirement. The evaluator shall ensure that the TSS describes the cryptographic module boundary. The

cryptographic module may very well be a particular kernel module, the Operating System, the

Application Processor, or up to the entire Mobile Device.

In performing their review, the evaluator shall determine that the TSS contains a description of the

activities that happen on power-up and password authentication relating to the decryption of DEKs,

stored keys, and data.

The evaluator shall ensure that the TSS describes how other functions available in the system (e.g.,

regeneration of the keys) ensure that no unencrypted key material is transmitted outside the

cryptographic module.

The evaluator shall review the TSS to determine that it makes a case that key material is not transmitted

outside the cryptographic module.

5.2.2.5.7 Extended: No Plaintext Key Transport (FPT_KST_EXT.3)

The ST author will provide a statement of their policy for handling and protecting keys. The evaluator

shall check to ensure the TSS describes a policy in line with not exporting either plaintext DEKs, KEKs, or

keys stored in the secure key storage.

5.2.2.5.8 Extended: Self-Test Event Notification (FPT_NOT_EXT.1)

The evaluator shall verify that the TSS describes critical failures that may occur and the actions to be

taken upon these critical failures.

Assurance Activity Note: The following test require the developer to provide access to a test platform

that provides the evaluator with tools that are typically not found on consumer Mobile Device products.

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 83 of 156

Test 1: The evaluator shall use a tool provided by the developer to modify files and processes in the

system that correspond to critical failures specified in the second list. The evaluator shall verify that

creating these critical failures causes the device to take the remediation actions specified in the first list.

5.2.2.5.9 Reliable Time Stamps (FPT_STM.1)

The evaluator shall examine the TSS to ensure that it lists each security function that makes use of time.

The TSS provides a description of how the time is maintained and considered reliable in the context of

each of the time related functions. This documentation must identify whether the TSF uses GPS, a NTP

server, or the carrier‘s network time as the primary time sources and whether any or all of these sources

is configurable.

The evaluator examines the operational guidance to ensure it instructs the administrator how to set the

time. If the TOE supports the use of an NTP server, the operational guidance instructs how a

communication path is established between the TOE and the NTP server, and any configuration of the

NTP client on the TOE to support this communication.

5.2.2.5.10 Extended: TSF Cryptographic Functionality Testing (FPT_TST_EXT.1)

The evaluator shall examine the TSS to ensure that it specifies the self-tests that are performed at start-

up. This description must include an outline of the test procedures conducted by the TSF (e.g., rather

than saying "memory is tested", a description similar to "memory is tested by writing a value to each

memory location and reading it back to ensure it is identical to what was written" shall be used). The TSS

must include any error states that they TSF may enter when self tests fail, and the conditions and

actions necessary to exit the error states and resume normal operation. The evaluator shall verify that

the TSS indicates these self-tests are run at start-up automatically, and do not involve any inputs from or

actions by the user or operator.

The evaluator shall inspect the list of self-tests in the TSS and verify that it includes algorithm self tests.

The algorithm self tests will typically be conducted using known answer tests.

5.2.2.5.11 Extended: TSF Integrity Testing (FPT_TST_EXT.2)

The evaluator shall verify that the TSS section of the ST includes a description of the boot procedures of

the software for the TSF‘s Application Processor. The evaluator shall ensure that before loading the

bootloader for the operating system and the kernel, the bootloader and kernel software is

cryptographically verified. The evaluator shall verify that the TSS contains a justification for the

protection of the cryptographic key or hash, preventing it from being modified by unverified or

unauthenticated software. The evaluator shall verify that the TSS contains a description of the

protection afforded to the mechanism performing the cryptographic verification.

For FPT_TST_EXT.2.2, the evaluator shall verify that the TSS section of the ST includes a description of

the boot procedures of the software for the TSF‘s application processor and baseband processor. The

evaluator shall ensure that before loading any executable code, that code is cryptographically verified.

The evaluator shall verify that the TSS contains a justification for the protection of the cryptographic

keys or hashes, preventing them from being modified by unverified or unauthenticated software.

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 84 of 156

5.2.2.5.12 Extended: Trusted Update: TSF Version Query (FPT_TUD_EXT.1)

The evaluator shall establish a test environment consisting of the mobile device and any supporting

software that demonstrates usage of the management functions. This can be test software from the

developer, a reference implementation of management software from the developer, or other

commercially available software. The evaluator shall set up the mobile device and the other software to

exercise the management functions according to provided guidance documentation.

Test 1: Using the AGD guidance provided, the evaluator shall test that the administrator and user can

query:

 the current version of the TSF operating system and any firmware that can be updated

separately

 the hardware model of the TSF

 the current version of all installed mobile applications

The evaluator must review manufacturer documentation to ensure that the hardware model identifier is

sufficient to identify the hardware which comprises the device.

5.2.2.5.13 Extended: Trusted Update Verification (FPT_TUD_EXT.2)

The evaluator shall verify that the TSS section of the ST describes the TSF software update mechanism

for updating the system software. The evaluator shall verify that the description includes a digital

signature verification of the software before installation and that installation fails if the verification fails.

The evaluator shall verify that the TSS describes the method by which the digital signature is verified and

that the public key used to verify the signature is either hardware-protected or is validated to chain to a

public key in the Trust Anchor Database. If hardware-protection is selected, the evaluator shall verify

that the method of hardware-protection is described and that the ST author has justified why the public

key may not be modified by unauthorized parties.

[conditional] If the ST author indicates that the public key for software update digital signature

verification, the evaluator shall verify that the update mechanism includes a certificate validation

according to FIA_X509_EXT.1 and a check for the Code Signing purpose in the extendedKeyUsage.

The evaluator shall verify that the ST author has provided evidence that the following tests were

performed:

Test 1: The tester shall try to install an update without the digital signature and shall verify that

installation fails. The tester shall attempt to install an update with digital signature, and verify that

installation succeeds.

Test 2: The tester shall digitally sign the update with a key disallowed by the device and verify that

installation fails. The tester shall digitally sign the update with the allowed key and verify that

installation succeeds.

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 85 of 156

Test 3: [conditional] The tester shall digitally sign the update with an invalid certificate and verify that

update installation fails. The tester shall digitally sign the application with a certificate that does not

have the Code Signing purpose and verify that application installation fails.

The evaluator shall verify that the TSS describes how mobile application software is verified at

installation. The evaluator shall ensure that this method uses a digital signature.

Test 1: The evaluator shall write, or the developer shall provide access to, an application. The evaluator

shall try to install this application without a digitally signature and shall verify that installation fails. The

evaluator shall attempt to install a digitally signed application, and verify that installation succeeds.

For FPT_TUD_EXT.2.5, the evaluator shall verify that the TSS describes how mobile application software

is verified at installation. The evaluator shall ensure that this method uses a digital signature by a code

signing certificate.

Test 1: The evaluator shall write, or the developer shall provide access to, an application. The evaluator

shall try to install this application without a digitally signature and shall verify that installation fails. The

evaluator shall attempt to install an application digitally signed with an appropriate certificate, and

verify that installation succeeds.

Test 2: The evaluator shall digitally sign the application with an invalid certificate and verify that

application installation fails. The evaluator shall digitally sign the application with a certificate that does

not have the Code Signing purpose and verify that application installation fails. This test may be

performed in conjunction with the assurance activities for FIA_X509_EXT.1.

Test 3: The evaluator shall configure the device to limit the public keys that can sign application software

according to the AGD guidance. The evaluator shall digitally sign the application with a certificate

disallowed by the device or configuration and verify that application installation fails. The evaluator shall

attempt to install an application digitally signed with an authorized certificate and verify that application

installation succeeds.

For FPT_TUD_EXT.2.6, the evaluator shall verify that the TSS describes the mechanism that prevents the

TSF from installing software updates that are an older version that the currently installed version.

Test 1: The evaluator shall attempt to install an earlier version of software and shall verify that the

update fails.

Test 2: The evaluator shall attempt to install a current or later version and shall verify that the update

succeeds.

5.2.2.6 TOE Access

5.2.2.6.1 Extended: TSF- and User-initiated Locked State (FTA_SSL_EXT.1)

The evaluator shall verify the TSS describes the actions performed upon transitioning to the locked state

. The evaluation shall verify that the AGD guidance describes the method of setting the inactivity interval

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 86 of 156

and of commanding a lock. The evaluator shall verify that the TSS describes the information allowed to

be displayed to unauthorized users.

Test 1: The evaluator shall configure the TSF to transition to the locked state after a time of inactivity

(FMT_SMF.1) according to the AGD guidance. The evaluator shall wait until the TSF locks and verify that

the display is cleared or overwritten and that the only actions allowed in the locked state are unlocking

the session and those actions specified in FIA_UAU_EXT.2.

Test 2: The evaluator shall command the TSF to transition to the locked state according to the AGD

guidance as both the user and the administrator. The evaluator shall wait until the TSF locks and verify

that the display is cleared or overwritten and that the only actions allowed in the locked state are

unlocking the session and those actions specified in FIA_UAU_EXT.2.

5.2.2.6.2 Extended: Wireless Network Access (FTA_WSE_EXT.1)

The assurance activity for this requirement is performed in conjunction with the assurance activity for

FMT_SMF.1.

5.2.2.6.3 Default TOE Access Banners (FTA_TAB.1)

The TSS shall describe when the banner is displayed. The evaluator shall also perform the following test:

Test 1: The evaluator follows the operational guidance to configure a notice and consent warning

message. The evaluator shall then start up or unlock the TSF. The evaluator shall verify that the notice

and consent warning message is displayed in each instance described in the TSS.

5.2.2.7 Trusted Path/Channels

5.2.2.7.1 Extended: Trusted Channel Communication (FTP_ITC_EXT.1)

The evaluator shall verify that the API documentation provided according to Section 6.2.1 includes the

security functions (trusted channel) described in these requirements. The evaluator shall write, or the

developer shall provide access to, an application that requests trusted channel services by the TSF. The

evaluator shall verify that the results from the trusted channel match the expected results according to

the API documentation. This application may be used to assist in verifying the trusted channel assurance

activities for the protocol requirements.

The evaluator shall examine the TSS to determine that it describes the details of the TOE connecting to

an access point in terms of the cryptographic protocols specified in the requirement, along with TOE-

specific options or procedures that might not be reflected in the specification. The evaluator shall also

confirm that all protocols listed in the TSS are specified and included in the requirements in the ST. The

evaluator shall confirm that the operational guidance contains instructions for establishing the

connection to the access point. The evaluator shall also perform the following tests:

Test 1: The evaluators shall ensure that the TOE is able to initiate communications with an access point

using the protocols specified in the requirement, setting up the connections as described in the

operational guidance and ensuring that communication is successful.

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 87 of 156

Test 2: The evaluator shall ensure, for each communication channel with an authorized IT entity, the

channel data is not sent in plaintext.

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 88 of 156

6 TOE Summary Specification (TSS)
This chapter describes the Windows 8.1 and Windows Phone security functions. The Security Functions

(SFs) satisfy the security functional requirements of the Mobile Device Fundamentals protection profile.

The TOE also includes additional relevant security functions which are also described in the following

sections, as well as a mapping to the security functional requirements satisfied by the TOE.

Unless otherwise noted in this section, all statements apply to Windows 8.1 and Windows Phone.

6.1 Product Architecture

6.2 TOE Security Functions
This section presents the TOE Security Functions (TSFs) and a mapping of security functions to Security

Functional Requirements (SFRs). The TOE performs the following security functions:

 Cryptographic Support

 User Data Protection

 Identification and Authentication

 Security Management

 Protection of the TSF

 TOE Access

 Trusted Path / Channels

6.2.1 Cryptographic Support

6.2.1.1 Cryptographic Algorithms and Operations

Cryptography API: Next Generation (CNG) API is designed to be extensible at many levels and agnostic to

cryptographic algorithm suites. An important feature of CNG is its native implementation of the Suite B

algorithms, including algorithms for AES (128, 192, 256 key sizes), the SHA-1 and SHA-2 family (SHA-256,

SHA-384 and SHA-512) of hashing algorithms, elliptic curve Diffie Hellman (ECDH), and elliptical curve

DSA (ECDSA) over the NIST-standard prime curves P-256, P-384, and P-521.

Protocols such as the Internet Key Exchange (IKE), and Transport Layer Security (TLS), make use of

elliptic curve Diffie-Hellman (ECDH) included in Suite B as well as hashing functions.

Deterministic random bit generation (DRBG) is implemented in accordance with NIST Special Publication

800-90. Windows generates random bits by taking the output of a cascade of two SP800-90 AES-256

counter mode based DRBGs in kernel-mode and four cascaded SP800-90 AES-256 DRBGs in user-mode;

programmatic callers can choose to obtain either 128 or 256 bits from the RBG which is seeded from the

Windows entropy pool. The entropy pool is populated using the following values:

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 89 of 156

 An initial entropy value from a seed file provided to the Windows OS Loader at boot time (512

bits of entropy). 33

 A calculated value based on the high-resolution CPU cycle counter which fires after every 1024

interrupts (a continuous source providing 16384 bits of entropy).

 Random values gathered periodically from the Trusted Platform Module (TPM), if one is

available on the system (320 bits of entropy on boot, 384 bits thereafter).

 Random values gathered periodically by calling the RDRAND CPU instruction, if supported by the

CPU (256 bits of entropy).

The main source of entropy in the system is the CPU cycle counter which tracks hardware interrupts.

This is a sufficient health test; if the computer were not accumulating hardware and software interrupts

it would not be running and therefore there would be no need for random bit generation. In the same

manner, a failure of the TPM chip or processor would be a critical error that halts the computer. In

addition, when the user chooses to follow the CC administrative guidance, which includes operating

Windows in the FIPS validated mode, it will run FIPS 140 AES-256 Counter Mode DBRG Known Answer

Tests (instantiate, generate) and Dual-EC DRBG Known Answer Tests (instantiate, generate) on start-up.

Windows always runs the SP 800-90-mandated self-tests for AES-CTR-DRBG during a reseed and runs

the Dual-EC reseed self-test when the user chooses to operate Windows in the FIPS validated mode. 34

Each entropy source is independent of the other sources and does not depend on time. The CPU cycle

counter inputs vary by environmental conditions such as data received on a network interface card, key

presses on a keyboard, mouse movement and clicks, and touch input.

The TSF defends against tampering of the random number generation (RNG) / pseudorandom number

generation (PRNG) sources by encapsulating its use in Kernel Security Device Driver. The interface for

the Windows random number generator is BCryptGenRandom.

By default, the CNG provider for random number generation is the AES_CTR_DRBG, however CNG can

be configured to use the Dual EC DRBG, which is no longer a FIPS approved algorithm. When Windows

requires the use of a salt it uses the Windows RBG.

The encryption and decryption operations are performed by independent modules, known as

Cryptographic Service Providers (CSPs) which are FIPS 140-2 Level 1 compliant. Windows generates

symmetric keys (AES keys) using the FIPS Approved random number generator.

In addition to encryption and decryption services, the TSF provides other cryptographic operations such

as hashing and digital signatures. Hashing is used by other FIPS Approved algorithms implemented in

Windows (the hashed message authentication code, RSA, DSA, and EC DSA signature services, Diffie-

Hellman and elliptic curve Diffie-Hellman key agreement, and the Dual EC random bit generator).

33

 The Windows OS Loader implements a SP 800-90 AES-CTR-DRBG and passes along 384 bits of entropy to the
kernel for CNG to be use during initialization. This DBRG uses the same algorithms to obtain entropy from the CPU
cycle counter, TPM, and RDRAND as described above.
34

 Running Windows in FIPS validated mode is required according to the administrative guidance.

http://msdn.microsoft.com/en-us/library/aa375458(v=VS.85).aspx

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 90 of 156

The hash-based message authentication code functions (HMAC) are based on SHA-1, SHA-256, SHA-384,

and SHA-512, have the following characteristics:

Table 6-1 HMAC Characteristics

HMAC
Algorithm

Hash function
Used

Block Size Output MAC
Length

Key Length / Key Size

HMAC-SHA-1 SHA-1 512 bits 20 bytes

The key size is 10-63 bytes when the
key size is less than the block size and
the key size is 65 to 1024 bytes when
the key size is greater than the block
size. The key size may also equal the
block size. The key size is variable.

HMAC-SHA-256 SHA-256 512 bits 32 bytes Same as HMAC-SHA-1

HMAC-SHA-384 SHA-384 1024 bits 48 bytes The key size is 24-127 bytes when the
key size is less than the block size and
the key size is 129-1024 bytes when
the key size is greater than the block
size. The key size may also equal the
block size. The key size is variable.

HMAC-SHA-512 SHA-512 1024 bits 64 bytes The key size is 32-127 bytes when the
key size is less than the block size and
the key size is 129-1024 bytes when
the key size is greater than the block
size. The key size may also equal the
block size. The key size is variable.

The HMAC function forms the basis for a FIPS Approved implementation of a password based key

derivation function (PBKDF). Windows inputs the password as a text string without any optional padding

or blocking into a HMAC 512 function. The hash functions supported by the Windows implementation of

SP 800-132 are SHA-1, SHA-256, SHA-384 or SHA-512. The SHA-512 function is used by DPAPI (see

Protecting Data with DPAPI).

Table 6-2 Cryptographic Algorithm Standards and Evaluation Methods

Cryptographic Operation Standard Evaluation Method

Encryption/Decryption FIPS 197 AES
For ECB, CBC, CFB8, CCM,
and GCM modes

NIST CAVP #2848, #2832, #2853

Digital signature FIPS 186-4 rDSA NIST CAVP #1487, #1493, #1494, #1519

Digital signature FIPS 186-4 DSA NIST CAVP #855

Digital signature FIPS 186-4 ECDSA NIST CAVP #505

Hashing FIPS 180-3 SHA-2 NIST CAVP #2373, #2396

Keyed-Hash Message
Authentication Code

FIPS 198-2 HMAC NIST CAVP #1773

Random number generation NIST SP 800-90 CTR_DRBG NIST CAVP #489 for CTR_DRBG

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 91 of 156

Key agreement NIST SP 800-56A ECDH NIST CAVP #47

IKEv1 SP800-135 NIST CVL #323

IKEv2 SP800-135 NIST CVL #323

TLS SP800-135 NIST CVL #323

The TSF includes a key isolation service designed specifically to host secret and private keys in a

protected process to mitigate tampering or access to sensitive key materials. The TSF performs a key

error detection check on each transfer of key (internal and intermediate transfers). The TSF prevents

archiving of expired (private) signature keys. The TSF destroys non-persistent cryptographic keys. The

TSF overwrites each intermediate storage area for plaintext key/critical cryptographic security

parameter (i.e., any storage, such as memory buffers, that is included in the path of such data). This

overwriting is performed as follows:

 For non-volatile memories other than EEPROM and Flash, the overwrite is executed three or

more times using a different alternating data pattern each time upon the transfer of the

key/critical cryptographic security parameter to another location.

 For volatile memory and non-volatile EEPROM and Flash memories, the overwrite is a single

direct overwrite consisting of a pseudo random pattern, followed by a read-verify upon the

transfer of the key/critical cryptographic security parameter to another location.

Windows uses FIPS Approved algorithms to establish Wi-Fi sessions and can be configured to use TLS

and IPsec ciphersuites that solely use FIPS Approved algorithm primitives. The following table describes

the keys and secrets used for IPsec, TLS, and Wi-Fi; when these ephemeral keys or secrets are no longer

needed for a network session, they are deleted as described above and in section 5.1.1.9.

Table 6-3 Keys Used for IPsec, TLS, and Wi-Fi

Key Description

Symmetric
encryption/decryption keys

Keys used for AES (FIPS 197) encryption/decryption for IPsec ESP,
TLS, Wi-Fi.

HMAC keys Keys used for HMAC-SHA1, HMAC-SHA256, HMAC-SHA384, and
HMAC-SHA512 (FIPS 198-1) as part of IPsec

Asymmetric ECDSA Public Keys Keys used for the verification of ECDSA digital signatures (FIPS 186-4)
for IPsec traffic and peer authentication.

Asymmetric ECDSA Private Keys Keys used for the calculation of ECDSA digital signatures (FIPS 186-4)
for IPsec traffic and peer authentication.

Asymmetric RSA Public Keys Keys used for the verification of RSA digital signatures (FIPS 186-4)
for IPsec, TLS, Wi-Fi and signed product updates.

Asymmetric RSA Private Keys Keys used for the calculation of RSA digital signatures (FIPS 186-4)
for IPsec, TLS, and Wi-Fi.

DH Private and Public values Private and public values used for Diffie-Hellman key establishment
for TLS.

ECDH Private and Public values Private and public values used for EC Diffie-Hellman key

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 92 of 156

establishment for TLS.

6.2.1.2 Programming Interfaces

Modern Store Applications can use these interfaces to obtain random bits from the OS:

 CryptographicBuffer.GenerateRandom

 CryptographicBuffer.GenerateRandomNumber

And can use these interfaces to obtain other cryptographic services from the OS:

 CryptographicEngine.Encrypt

 CryptographicEngine.Decrypt

 HashAlgorithmProvider.CreateHash

 HashAlgorithmProvider.HashData

 CryptographicEngine.Sign

 CryptographicEngine.VerifySignature

 KeyDerivationParameters.BuildForPbkdf2

 AsymmetricKeyAlgorithmProvider.CreateKeyPair

 CryptographicEngine.Sign

 CryptographicEngine.SignAsync

 CryptographicEngine.SignHashedData

 CryptographicEngine.SignHashedDataAsync

 CryptographicEngine.VerifySignature

 CryptographicEngine.VerifySignatureWithHashInput

 CryptographicEngine.Encrypt

 CryptographicEngine.Decrypt

6.2.1.3 Trusted Platform Module

Computers that incorporate a TPM have the ability to both create cryptographic keys within the TPM

and protect data stored outside TPM so that the data can be decrypted only by the TPM internal keys.

This process, often called "sealing" or "binding", can help protect the data from disclosure, but more

importantly associates the key with the TPM. Each TPM contains a master "sealing" key, called the

Storage Root Key (SRK), which was generated by the Storage Primary Seed (SPS). Like other

cryptographic data within the TPM, the private portion of a key created in a TPM is never exposed to

any other component, software, process, or user.

A TPM 2.0 protection profile written by the Trusted Computing Group provides additional detail about

the SPS and the SRK: “The TPM holds the Storage Primary Seed (SPS) and generates Storage Root Keys

(SRK) from SPS. The SRK are roots of Protected Storage Hierarchies associated with a TPM.35 The storage

keys in these hierarchies are used for symmetric encryption and signing of other keys and data together

35

 Windows creates only one protected storage hierarchy, and that is used by BitLocker.

http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.cryptographicbuffer.generaterandom.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.cryptographicbuffer.generaterandomnumber.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.core.cryptographicengine.encrypt.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.core.cryptographicengine.decrypt.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.core.hashalgorithmprovider.createhash.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.core.hashalgorithmprovider.hashdata.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.core.cryptographicengine.sign.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.core.cryptographicengine.verifysignature.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.security.cryptography.core.keyderivationparameters.buildforpbkdf2.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.core.asymmetrickeyalgorithmprovider.createkeypair.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.core.cryptographicengine.sign.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.core.cryptographicengine.signasync.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.core.cryptographicengine.signhasheddata.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.core.cryptographicengine.signhasheddataasync.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.core.cryptographicengine.verifysignature.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.core.cryptographicengine.verifysignaturewithhashinput.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.core.cryptographicengine.encrypt.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.core.cryptographicengine.decrypt.aspx

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 93 of 156

with their security attributes. The resulting encrypted file, which contains header information in addition

to the data or the key, is called a BLOB (Binary Large Object) and is output by the TPM and can be loaded

in the TPM when needed. The private keys generated on the TPM can be stored outside the TPM

(encrypted) in a way that allows the TPM to use them later without ever exposing such keys in the clear

outside the TPM. The TPM uses symmetric cryptographic algorithms to encrypt data and keys ….”36

The TPM also provides protections that prevent the export of TPM keys and cryptographic data, such as

the SPS and SRK, and anti-hammering mechanisms to prevent guessing of a TPM password.

6.2.1.4 Encrypting the Device with BitLocker

The BitLocker Data Encryption Key (DEK), also known as the Full Volume Encryption Key (FVEK), which

encrypts the device’s storage volume is 128 bits for Windows Phone. For other Windows editions the

administrator can choose to use either a 128 bit or 256 FVEK, however the instruction in the

administrative guidance is use a 256 bit FVEK. The Windows RBG generates the FVEK. The FVEK is

ultimately protected by keys within the TPM, namely the Storage Root Key (SRK) and the Storage

Primary Seed, the latter is the Root Encryption Key (REK), and protects the SRK. During initialization, the

TPM also generates the 2048-bit RSA key pair that is used as the SRK; sealing operations by the SRK in

turn protects the BitLocker intermediate keys which are used by Windows when Windows boots (or

resumes from hibernation and so the REK is isolated from operating system and applications and thus

preventing reading and exporting the plaintext representation of the REK.

The key hierarchy for BitLocker shows an AES 256 CCM function is used to encrypt the Volume Master

Key (VMK), which is a KEK and the Full Volume Encryption Key (FVEK), which is a DEK. The FVEK encrypts

disk blocks using AES CBC.

The other KEKs are always 256 bits, and so their key size will always the same or larger than the FVEK.

For Windows 8.1, the Windows OS Loader will prompt the user for the Enhanced PIN which is used to

generate a set of intermediate keys, one of which is sealed by the TPM; the ultimate result is a key

which decrypts the encrypted VMK, which in turn decrypts the encrypted FVEK, thus enabling the

Windows Loader to read the Windows kernel, ntoskrnl.exe, and then transfer execution to the kernel.

For Windows Phone, the Windows OS Loader will use the TPM to seal the Intermediate Key, which is

then used to decrypt the encrypted VMK, which in turn decrypts the encrypted FVEK, thus enabling the

Windows Loader to read the Windows kernel, ntoskrnl.exe, from the primary partition and then transfer

execution to the kernel.

The FVEK and intermediate keys are all generated by the Windows RBG or by combining intermediate

keys as described in FCS_CKM_EXT.3.

The unencrypted VMKs are zeroized after they are (1) used to encrypt the FVEK and (2) encrypted by an

intermediate key. The other keys are also zeroized from volatile memory in the process of generating

the VMK. When Windows shuts down normally or goes into hibernation, Windows will zeroize the FVEK

36

 Draft Protection Profile PC Client Specific TPM, FCS_COP.1/AES, page 5.

http://www.trustedcomputinggroup.org/files/static_page_files/0328C641-1A4B-B294-D0D3151FB2B30179/TCG_PP_PC_client_specific_TPM_SecV2_v10_PublicReview.pdf

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 94 of 156

as part of shutdown. In the event of a system crash, the BitLocker Crash Dump Filter will zeroize the

FVEK in order to prevent the FVEK from being included in the crash dump file.

6.2.1.5 Key Storage

The Key Isolation Service in Windows hosts secret and private keys within a protected process in order

to mitigate tampering or access to sensitive key materials, which can be private keys, secret keys, or

other secret material that need to be persisted. The NTFS files that the Key Isolation Service uses to

store keys are protected by the Discretionary Access Control security policy described in the Windows 8,

Server 2012 Security Target. In the NTFS file the key data is further is protected by the Data Protection

API (DPAPI), which is described further below. The NTFS files are stored in NTFS volumes which is

protected by BitLocker full disk encryption. Please see Data at Rest Protection for more information on

BitLocker full disk encryption.

The IT administrator can configure Certificate Profiles in a Mobile Device Management (MDM) server for

importing keys to the enrolled Windows devices. Applications import keys/secrets into the secure key

storage by using the CertificateEnrollmentManager.ImportPfxDataAsync API. In addition, on Windows

8.1 devices users and local administrators can use the Certificate MMC Snap-in to import keys from

Personal Information Exchange (.pfx) files into the secure key storage.

Private keys are protected on disk using DPAPI and BitLocker encryption and access is restricted using

the Windows Discretionary Access Control Policy. When a Windows Store Application is deleted the

local private keys imported by that app are deleted. All private keys are destroyed when a wipe

operation is performed on a device. Local administrators can also perform a wipe on their Windows

device to destroy all the keys or secrets. The IT administrator can perform a wipe operation of the

enrolled device to destroy the keys.

Windows can restrict access to the application imported key/secret in secure key storage to only the

application that imported the key or secret by using the subject identity for the Discretionary Access

Control security policy as described in the Windows 8 Server 2012 Security Target. Users and local

administrators authorize applications at installation to access shared keys or secrets when an application

declares the sharedUserCertificates capability to share the certificate with other Windows Store

Applications for the user. The sharedUserCertificates capability is described further in Restricting Access

to System Services.

Destruction of keys/secrets imported into the secure key storage by applications is conducted

automatically by the modern application environment after the keys/secrets are no longer in use.

For the purposes of this Mobile Device evaluation, the cryptographic module is the combination of the

operating system and the device running Windows. After the device is configured the only persisted

keys which protect user data via BitLocker are the Storage Root Key held by the TPM (the REK), the

encrypted VMK (a KEK), and the encrypted FVEK (the DEK). When the device is turned on, the TPM

checks the integrity of the SRK as described above, and then the Windows OS Loader unwraps the VMK

and FVEK after the user provides the correct authorization factors. When a user provides their password

https://www.niap-ccevs.org/st/st_vid10520-st.pdf
https://www.niap-ccevs.org/st/st_vid10520-st.pdf
http://msdn.microsoft.com/en-us/library/windows/apps/windows.security.cryptography.certificates.certificateenrollmentmanager.importpfxdataasync.aspx
https://www.niap-ccevs.org/st/st_vid10520-st.pdf

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 95 of 156

during interactive logon, Windows will use the submask derived from the password to provide access to

private keys and secrets protected by DPAPI.

No unencrypted BitLocker key material is transmitted outside the cryptographic module. The encrypted

FVEK, VMK, and Intermediate Key are stored on disk as metadata on the storage volume, however the

metadata is stored outside of the mounted NTFS volume and so these are never transmitted outside the

device, which the boundary of the cryptographic module in this evaluation.

6.2.1.6 Protecting Data with DPAPI

The Windows RBG generates a DPAPI Master Secret which is used as input into an AES function along

with an initialization vector and encryption key, both of which are based on the user’s password, to

generate the encrypted DPAPI Master Secret. The DPAPI Master Secret is a kind of DEK and the

password-based encryption key, which protects the DPAPI Master Secret is a kind of KEK. Also note that

the DPAPI Master Secret is ultimately protected by the REK. The password encryption key is generated

from a PBKDF2 function takes a result of a one-way function computation of the user’s password.37

Windows will also combine the DPAPI Master Secret along with a salt value which will be used as an

encryption key to protect user data, such as a private key. Each user will have a separate encryption key.

The integrity of both the encrypted DPAPI Master Secret and the encryption key is ensured by

calculating MAC values.

6.2.1.7 Networking

Windows has a native implementation of IEEE 802.11-2012 to provide secure wireless local area

networking (Wi-Fi). Windows uses PRF-384 in WPA2 Wi-Fi sessions and generates AES 128-bit keys using

the Windows RBG. Windows complies with the IEEE 802.11-2012 standard and interoperates with other

devices that implement the standard. TOE devices have received WPA2 certification, both Enterprise

and Personal, and Wi-Fi CERTIFIED Interoperability Certificates from the Wi-Fi Alliance:

 Surface 3 (the Marvell 8897 adapter is also certified)

 Lumia 635

 Lumia 830

Windows implements key wrapping and unwrapping according to the NIST SP 800-38F specification (the

“KW” mode) and so unwraps the Wi-Fi Group Temporal Key (GTK) which was sent by the access point.

Because the GTK was protected by AES Key Wrap when it was delivered in an EAPOL-Key frame, the GTK

is not exposed to the network.

37

 Note that data protected by DPAPI is also encrypted by BitLocker when the data is persisted to disk, and so the
AES256 encrypted data will be encrypted a second time using the BitLocker 128-bit or 256-bit FVEK.

http://www.wi-fi.org/content/search-page?keys=WFA59150
https://www.wi-fi.org/product-finder-results?keywords=19950
http://www.wi-fi.org/content/search-page?keys=Lumia%20635
http://www.wi-fi.org/content/search-page?keys=Lumia%20830

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 96 of 156

6.2.1.8 Network Protocols

6.2.1.8.1 TLS and EAP TLS

Windows 8.1 and Windows Phone implement TLS to enable a trusted network path that is used for both

EAP, for client and server authentication, as well as HTTPS/ HTTP/TLS.

The following table summarizes the TLS RFCs implemented in Windows:

Table 6-4 TLS RFCs Implemented by Windows

RFC # Name How Used

2246 The TLS Protocol Version 1.0 Specifies requirements for TLS 1.0.

3268 Advanced Encryption Standard (AES)
Ciphersuites for Transport Layer Security
(TLS)

Specifies additional ciphersuites
implemented by Windows.

3546 Transport Layer Security (TLS) Extensions Updates RFC 2246 with TLS 1.0 extensions
implemented by Windows.

4346 The Transport Layer Security (TLS)
Protocol Version 1.1

Specifies requirements for TLS 1.0.

4366 Transport Layer Security (TLS) Extensions Obsoletes RFC 3546 Requirements for TLS
1.0 extensions implemented by Windows.

4492 Elliptic Curve Cryptography (ECC) Cipher
Suites for Transport Layer Security (TLS)

Specifies additional ciphersuites
implemented by Windows.

4681 TLS User Mapping Extension Extends TLS to include a User Principal
Name during the TLS handshake.

5246 The Transport Layer Security (TLS)
Protocol Version 1.2

Oboletes RFCs 3268, 4346, and 4366.
Specifies requirements for TLS 1.2.

5289 TLS Elliptic Curve Cipher Suites with SHA-
256/384 and AES Galois Counter Mode
(GCM)

Specifies additional ciphersuites
implemented by Windows.

SSL3 The SSL Protocol Version 3 Specifies requirements for SSL3.

Exceptions from the protocols are described in these documents:

 MS-TLSP Transport Layer Security (TLS) Profile.docx

 RFC 2246 - The TLS Protocol Version 1.0.docx

 RFC 3268 - AES Ciphersuites for TLS.docx

 RFC 3546 Transport Layer Security (TLS) Extensions.docx

 RFC 4366 Transport Layer Security (TLS) Extensions.docx

 RFC 4492 - ECC Cipher Suites for TLS.docx

 RFC 4681 - TLS User Mapping Extension.docx

 RFC 5246 - The Transport Layer Security (TLS) Protocol, Version 1.2.docx

 RFC 5289 - TLS ECC Suites with SHA-256384 and AES GCM.docx

 Internet Draft - SSL3 SSL 3.0 Specification.docx

http://www.ietf.org/rfc/rfc2246.txt
http://www.ietf.org/rfc/rfc3268.txt
http://www.ietf.org/rfc/rfc3268.txt
http://www.ietf.org/rfc/rfc3268.txt
http://www.ietf.org/rfc/rfc3546.txt
http://www.ietf.org/rfc/rfc4346.txt
http://www.ietf.org/rfc/rfc4346.txt
http://www.ietf.org/rfc/rfc4366.txt
http://www.ietf.org/rfc/rfc4492.txt
http://www.ietf.org/rfc/rfc4492.txt
http://www.ietf.org/rfc/rfc4681.txt
http://www.ietf.org/rfc/rfc5246.txt
http://www.ietf.org/rfc/rfc5246.txt
http://www.ietf.org/rfc/rfc5289.txt
http://www.ietf.org/rfc/rfc5289.txt
http://www.ietf.org/rfc/rfc5289.txt
https://tools.ietf.org/html/draft-ietf-tls-ssl-version3-00
https://tools.ietf.org/html/draft-ietf-tls-ssl-version3-00

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 97 of 156

The Cipher Suites in Schannel article describes the complete set of TLS cipher suites implemented in

Windows (reference: http://msdn.microsoft.com/en-

us/library/windows/desktop/aa374757(v=vs.85).aspx), of which the following are used in the evaluated

configuration:

 TLS_RSA_WITH_AES_128_CBC_SHA

 TLS_RSA_WITH_AES_256_CBC_SHA

 TLS_RSA_WITH_AES_128_CBC_SHA256 as defined in RFC 5246

 TLS_RSA_WITH_AES_256_CBC_SHA256 as defined in RFC 5246

 TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 as defined in RFC 5289

 TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 as defined in RFC 5289

 TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 as defined in RFC 6460

 TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384 as defined in RFC 6460.

Each Windows component that uses TLS checks that the identifying information in the certificate

matches what is expected, the component should reject the connection, these checks include checking

the expected Distinguished Name (DN), Subject Name (SN), or Subject Alternative Name (SAN)

attributes along with the applicable extended key usages. The DN, and any Subject Alternative Name, in

the certificate is checked against the identity of the remote computer’s DNS entry or IP address to

ensure that it matches as described at http://technet.microsoft.com/en-

us/library/cc783349(v=WS.10).aspx, and in particular the “Server Certificate Message” section.

Windows implements HTTPS as described in RFC 2818 so that Windows Store and system applications

executing on the TOE can securely connect to external servers using HTTPS.

6.2.1.8.2 IPsec

The Windows IPsec implementation conforms to RFC 4301, Security Architecture for the Internet

Protocol. This is documented publicly in the Windows protocol documentation at section 7.5.1 IPsec

Overview.38 Windows implements both RFCS 2409, Internet Key Exchange (IKEv1), and RFC 4306,

Internet Key Exchange version 2, (IKEv2).39 User-mode applications, which include Windows Store

Applications, can transparently use IPsec networking services; networking traffic is isolated to the

Windows kernel and the IPsec, IPsec Policy Agent, and IKE and AuthIP Keying Module user-mode service

processes.

6.2.1.9 SFR Mapping

The Cryptographic Support function satisfies the following SFRs:

 FCS_CKM.1(ASYM KA), FCS_CKM.1(ASYM AU): See Table 6-2 Cryptographic Algorithm

Standards and Evaluation Methods.

 FCS_CKM.1(WLAN), FCS_CKM.2: Windows has a native implementation of IEEE 802.11.

38

 Also available as [MS-WSO], Windows System Overview, page 43 for offline reading.
39

 [MS-IKEE], Internet Key Exchange Protocol Extensions, page 8.

http://msdn.microsoft.com/en-us/library/windows/desktop/aa374757(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa374757(v=vs.85).aspx)
http://msdn.microsoft.com/en-us/library/windows/desktop/aa374757(v=vs.85).aspx)
http://technet.microsoft.com/en-us/library/cc783349(v=WS.10).aspx
http://technet.microsoft.com/en-us/library/cc783349(v=WS.10).aspx
http://www.ietf.org/rfc/rfc4301.txt
http://www.ietf.org/rfc/rfc4301.txt
http://msdn.microsoft.com/en-us/library/jj709814.aspx
http://msdn.microsoft.com/en-us/library/jj709814.aspx
http://www.ietf.org/rfc/rfc2409.txt
http://www.ietf.org/rfc/rfc4306.txt
http://msdn.microsoft.com/en-us/library/windows/hardware/ff556022(v=vs.85).aspx

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 98 of 156

 FCS_CKM_EXT.1: The Windows devices in this evaluation use a root key of trust which prevents

exporting or tampering the REK.

 FCS_CKM_EXT.2(128), FCS_CKM_EXT.2(256): All data encrypting keys are generated by the

Windows RBG, which has an input of at least 256 bits of entropy. The Windows Phone and data

encrypting key is 128 bits, the Windows 8.1 data encrypting key is 256 bits in the evaluated

configuration.

 FCS_CKM_EXT.3: Key encrypting keys have a security strength of 256 bits which is least as

strong as the 128 bit or 256 bit disk encrypting key.

 FCS_CKM_EXT.4: Windows overwrites critical cryptographic parameters immediately after that

data is no longer needed.

 FCS_CKM_EXT.5: Windows will delete the authorization factor to prevent access to protected

data; after a wipe command Windows will format the partition to prevent access to protected

data.

 FCS_CKM_EXT.6: When Windows needs to generate a salt, it uses the Windows random bit

generator

 FCS_COP.1(SYM): See Table 6-2 Cryptographic Algorithm Standards and Evaluation Methods.

 FCS_COP.1(HASH): See Table 6-2 Cryptographic Algorithm Standards and Evaluation Methods.

 FCS_COP.1(SIGN): See Table 6-2 Cryptographic Algorithm Standards and Evaluation Methods.

 FCS_COP.1(HMAC): See Table 6-2 Cryptographic Algorithm Standards and Evaluation Methods.

 FCS_COP.1(PBKD): Windows implements a FIPS Approved implementation of NIST SP 800-132.

 FCS_IV_EXT.1: When it is necessary to generate initialization vectors, Windows follows the

guidance in Table 11: References and IV Requirements for NIST-approved Cipher Modes.

 FCS_RBG_EXT.1: See Table 6-2 Cryptographic Algorithm Standards and Evaluation Methods.

 FCS_SRV_EXT.1: See Section 6.2.1.2 Programming Interfaces.

 FCS_STG_EXT.1: Windows provides secure key storage for private (asymmetric) keys, secret

(symmetric) keys, and other data deemed by an authorized subject to require secure storage.

 FCS_STG_EXT.2: All keys in Windows are ultimately protected by the TPM-based root of trust for

the devices included in this evaluation.

 FCS_STG_EXT.3: Key encrypting keys are protected by AES- MAC (CCM) mode.

 FCS_TLS_EXT.1, FCS_TLS_EXT.2, FCS_HTTPS_EXT.1: Windows implements TLS 1.0, 1.1, and 1.2

to provide confidentiality and integrity to upper-layer protocols such as Extensible

Authentication Protocol and HTTP.

6.2.2 User Data Protection

6.2.2.1 Restricting Access to System Services

Windows Store Apps that need programmatic access resources such as device peripherals must declare

the capabilities they require as part of the package manifest for the application.40 There are two types of

capabilities, the first is for developers who are registered as having individual accounts in the Windows

40

 This section is based on http://msdn.microsoft.com/en-us/library/windows/apps/hh464936.aspx.

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 99 of 156

Store; the second kind is for developers who are registered as having company accounts in the Windows

Store. Applications from developers that are registered as companies can have additional capabilities.

The general-use capabilities that apply to most application scenarios are:

Table 6-5 General Use Capabilities

Capability Description

Music The musicLibrary capability provides programmatic access to the
user's Music, allowing the app to enumerate and access all files in the
library without user interaction. This capability is typically used in
jukebox apps that need to access the entire Music library.

Pictures The picturesLibrary capability provides programmatic access to the
user's Pictures, allowing the app to enumerate and access all files in
the library without user interaction. This capability is typically used in
photo playback apps that need to access the entire Pictures library.

Videos The videosLibrary capability provides programmatic access to the
user's Videos, allowing the app to enumerate and access all files in
the library without user interaction. This capability is typically used in
movie playback apps that need access to the entire Videos library.

Removable Storage The removableStorage capability provides programmatic access to
files on removable storage, such as USB keys and external hard drives,
filtered to the file type associations declared in the package manifest.
For example, if a DOC reader app declared a .doc file type association,
it can open .doc files on the removable storage device, but not other
types of files.

internetClient Windows 8.1 behavior: Can receive incoming data from the internet.
Cannot act as a server. No local network access.41
Windows Phone behavior: Full local and internet access and can act
as a server. Inbound access to critical ports is always blocked.

internetClientClientServer42 Windows 8.1 behavior: Can receive incoming data from the internet.
Can act as a server. No local network access.
Windows Phone behavior: Full local and internet access and can act
as a server. Inbound access to critical ports is always blocked.

Home and work networks The privateNetworkClientServer capability provides inbound and
outbound access to home and work networks through the firewall.
This capability is typically used for games that communicate across
the local area network (LAN), and for apps that share data across a
variety of local devices.
On Windows, this capability does not provide access to the internet.
On Windows Phone, this capability provides the same access as

41

 This a “least privilege” security measure because many Windows Store Applications need only to receive or send
data to remote web services (e.g., social network sites or weather apps) and not communicate with other hosts on
the local network.
42

 Most Windows Store Apps that have a web service component will use internetClient. Apps that enable peer-to-
peer (P2P) scenarios where the app needs to listen for incoming network connections should use
internetClientServer.

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 100 of 156

internetClient or internetClientClientServer.

Appointments The appointments capability provides access to the user’s
appointment store. This capability allows read access to
appointments obtained from the synced network accounts and to
other apps that write to the appointment store.

Contacts The contacts capability provides access to the aggregated view of the
contacts from various contacts stores. This capability gives the app
limited access (network permitting rules apply) to contacts that were
synced from various networks and the local contact store.

Device capabilities allow the Windows Store App to access peripheral and internal devices. Device

capabilities are specified with the DeviceCapability element in the app package manifest.

Table 6-6 Device Capabilities

Capability Description

Location The location capability provides access to location functionality,
which you get from dedicated hardware like a GPS sensor in the PC or
is derived from available network info. Apps must handle the case
where the user has disabled location services from the Settings
charm.43

Microphone The microphone capability provides access to the microphone’s audio
feed, which allows the app to record audio from connected
microphones. Apps must handle the case where the user has disabled
the microphone from the Settings charm.

Proximity The proximity capability enables multiple devices in close proximity
to communicate with one another. This capability is typically used in
casual multi-player games and in apps that exchange information.
Devices attempt to use the communication technology that provides
the best possible connection, including Bluetooth, Wi-Fi, and the
internet. This capability is used only to initiate communication
between the devices.

Webcam The webcam capability provides access to the video feed of a built-in
camera or external webcam, which allows the app to capture photos
and videos. On Windows, apps must handle the case where the user
has disabled the camera from the Settings charm.

USB The usb device capability enables access to APIs in the
Windows.Devices.Usb namespace.
This capability is used only Windows 8.1, not Windows Phone.

Human interface device
(HID)

The humaninterfacedevice device capability enables access to APIs in
the Windows.Devices.HumanInterfaceDevice namespace. This
namespace enables the Windows Store App to access devices that
support the Human Interface Device (HID) protocol.

Bluetooth GATT The bluetooth.genericAttributeProfile device capability enables

43

 A charm is an admin tool available by opening the Windows Settings page by swiping from the left side of the
screen.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.devices.usb.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.devices.humaninterfacedevice.aspx

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 101 of 156

access to APIs in the
Windows.Devices.Bluetooth.GenericAttributeProfile namespace. This
namespace enables the Windows Store App to access Bluetooth LE
devices through a collection of primary services, included services,
characteristics, and descriptors.

Bluetooth RFCOMM The bluetooth.rfcomm device capability enables access to APIs in the
Windows.Devices.Bluetooth.Rfcomm namespace. This namespace
supports the Basic Rate/Extended Data Rate (BR/EDR) transport and
also enables the Windows Store App to access a device that
implements Serial Port Profile (SPP).

The additional capabilities associated with Windows Store Applications which are from company

accounts are highly restricted and require additional review before the App is published to the Windows

Store.

Table 6-7 Special Use Capabilities

Capability Description

Enterprise authentication Windows domain credentials, which are domain username and
password for a particular user, enable the user to log into remote
resources using their credentials, and act as if a user provided their
user name and password. The enterpriseAuthentication capability is
typically used in line-of-business apps that connect to servers within
an enterprise and is not needed for basic communications over the
Internet.
The Enterprise Authentication capability allows a Windows Store App
to use the Credential Manager when prompted for domain
credentials.

Shared User Certificates The sharedUserCertificates capability enables a Windows Store
Application to access software and hardware certificates, such as
certificates stored on a smart card, the certificate is stored in the
user’s DPAPI profile location instead of the DPAPI profile associated
with the Windows Store Application

Documents The documentsLibrary capability provides programmatic access to
the user's Documents, filtered to the file type associations declared in
the package manifest, to support offline access to OneDrive. For
example, if a DOC reader app declared a .doc file type association, it
can open .doc files in Documents, but not other types of files.

As part of installing a Windows Store Application, the user is prompted to authorize the use of the

capability by the App, after the App has been installed is it allowed to access the capability when

running on behalf of the user. When an App requests to access a resource that is managed by a

capability, the Windows App Container, checks if the App has been authorized access, according to the

installed package manifest, and then provides mediated access to the resource. In addition to the

application-level isolation, Windows also restricts access to hardware resources through the

http://msdn.microsoft.com/en-us/library/windows/apps/windows.devices.bluetooth.rfcomm.aspx

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 102 of 156

discretionary access control security policy and kernel-mode / user-mode architecture described in the

Windows 8 Server 2012 Security Target.

6.2.2.2 Data at Rest Protection

The entire storage volume is protected by BitLocker full disk encryption, this includes user data,

Windows configuration (TSF) data, and all programs other than the BitLocker programs needed to

unlock the drive. BitLocker in Windows 8 was evaluated against the NIAP Software Full Disk Encryption

Protection Profile (certificate # 10540). Device Encryption, the term Windows Phone full disk encryption

is the same as BitLocker, however the Software Full Disk Encryption protection profile included

requirements for authorization factors which are not part of those two products; otherwise the

implementations are the same, using AES CBC mode with 128-bit blocks for Windows Phone and an

administrator-specified 128- or 256-bit blocks for Windows 8.1. The administrative guidance

recommends using AES 256.

When the local administrator decides to wipe the device, or the IT administrator decides to wipe a

phone using a MDM, Windows will delete the BitLocker metadata, which includes the authorization

factors that unlock the device. Without the BitLocker metadata, the encrypted data on the storage

volume is effectively wiped. The wiping of the BitLocker metadata from flash memory on Windows 8.1 is

performed by first overwriting the metadata with zeros, then overwriting the data with ones and finally

overwriting the data with random bytes, each step is followed by a read-verify. On Windows Phone 8.1

the metadata is deleted in the same manner as Windows 8.1. After deleting the metadata, Windows will

reboot and install a fresh copy of the operating system from a recovery partition.

6.2.2.3 Protecting Sensitive User Data

Windows 8.1 and Windows Phone 8.1 can provide an additional layer of protection using the Encrypting

File System which is a per-file encryption capability at an architectural layer above BitLocker (which

encrypt disk blocks on the storage volume). For Windows 8.1, the user can choose which files to encrypt,

Windows Phone 8.1 will automatically encrypt the user’s enterprise mail folder which, in the context of

this evaluation, is deemed to be sensitive data. The application chooses which keys and data to protect

by using the CNG DPAPI and specifying the “local locked credentials” protection descriptor which uses

an asymmetric encryption scheme to protect the user data.

When the screen is locked, Windows Phone will suspend all Windows Store Applications except those

which are registered to display notifications on the lock screen as described in section 6.2.6. These

applications can use the CNG DPAPI to protect their data. When the screen has been unlocked, the

application decrypts the sensitive data using CNG DPAPI. When the data is ultimately persisted to disk it

is encrypted again using the BitLocker FVEK. To add more detail, received email content is encrypted by

the public portion of a key pair. When the screen is unlocked, Windows will (1) retrieve an encrypted

copy of the private portion of the key pair from the Windows registry (the private was deleted from

volatile memory when the screen was locked), (2) decrypt the private using a symmetric encryption key

associated with the user, and (3) then use the private key to decrypt the sensitive data.

https://www.niap-ccevs.org/st/st_vid10520-st.pdf
https://www.niap-ccevs.org/st/st_vid10540-st.pdf
https://www.niap-ccevs.org/pp/pp_swfde_v1.1.pdf
https://www.niap-ccevs.org/pp/pp_swfde_v1.1.pdf
https://www.niap-ccevs.org/st/st_vid10540-vr.pdf

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 103 of 156

The symmetric encryption key mentioned in the previous session is a Device User Credential Key (DUCK)

which is a 256-bit value generated by the RBG. During initial logon or when changing credentials,

Windows Phone will seal this key and a hash of the user’s password. The DUCK then encrypts the private

portion of the key pair described above. When the screen is locked both the DUCK and the private

portion of the CNG DPAPI key pair are deleted from volatile memory.

6.2.2.4 Certificate Storage

The MDF PP defines the Trust Anchor Database as “[a] list of trusted root Certificate Authority

certificates”. In a Windows OS, these certificates are known as trusted root certificates, which are

contained in certificate stores. Each user has their own certificate store and there is a certificate store

for the computer account; access to a certificate store is managed by the discretionary access control

policy in Windows such that only the authorized administrator, i.e., the user or the local administrator,

can add or remove entries.44 Certificates which are used by applications, for example, IPsec and TLS, are

also placed in certificate stores for the user.

In addition to the standard certificate revocation processes, application certificates can be loaded by

either using administrative tools such as certutil.exe, changes to the trusted root certificates can be

made using Certificate Trust Lists.

6.2.2.5 VPN Client

The Windows IPsec VPN client can be configured by the device local administrator or the MDM IT

administrator, when the device is enrolled. The administrator can also configure the IPsec VPN client

that traffic is routed through the IPsec. The IPsec VPN is an end-to-end internetworking technology and

so VPN sessions can be established over physical network protocols such as mobile broadband (ex. LTE)

wireless LAN (Wi-Fi), or local area network.

The components responsible for routing IP traffic through the VPN client:

 The IPv4 / IPv6 network stack in the kernel processes ingoing and outgoing network traffic.

 The IPsec and IKE and AuthIP Keying Modules service which hosts the IKE and Authenticated

Internet Protocol (AuthIP) keying modules. These keying modules are used for authentication

and key exchange in Internet Protocol security (IPsec).

 The Remote Access Service device driver in the kernel, which is used primarily for VPN

connections; known as the “RAS IPsec VPN” or “RAS VPN”.

 The IPsec Policy Agent service which enforces IPsec policies.

6.2.2.6 SFR Mapping

The User Data Protection function satisfies the following SFRs:

 FDP_ACF_EXT.1: Through the use of capabilities that Windows Store Applications request during

installation, Windows restricts system services to Apps.

44

 Refer to the Windows 8 Operating System Protection Profile evaluation for more information about the
discretionary access control policy.

http://msdn.microsoft.com/en-us/library/windows/desktop/aa376545(v=vs.85).aspx

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 104 of 156

 FDP_DAR_EXT.1(128), FDP_DAR_EXT.1(128): All user data and all Windows data is encrypted on

the device.

 FDP_DAR_EXT.2: All sensitive data in the Windows Phone is encrypted when the screen is

locked.

 FDP_STG_EXT.1: Windows provides a trusted and secure store for certificates.

6.2.3 Identification and Authentication

All logons are treated essentially in the same manner regardless of their source (e.g., interactive logon,

network interface, internally initiated service logon) and start with an account name, domain name

(which may be NULL; indicating the local system), and credentials that must be provided to the TSF.

The Local Security Authority component within Windows maintains a count of the consecutive failed

logon attempts by security principals from their last successful authentication. When the number of

consecutive failed logon attempts is larger than the policy for failed logon attempts, which ranges from

0 (never lockout the account) to 999, Windows 8.1 will lockout the user account and Windows Phone

will wipe the user data from the device. Interactive logons are done on the secure desktop, which does

not allow other programs to run, and therefore prevents automated password guessing. In addition, the

Windows logon component enforces a one second delay between every failed logon with an increased

delay after several consecutive logon failures.

The Windows implementation of Bluetooth follows the Bluetooth SIG Specification, including OBEX data

transfer and OPP (object push profile). The OBEX specification, which Windows implements, prevents

any transfer of user data until both Bluetooth devices have paired. When a Windows OS encounters an

unpaired device, it does not transfer any data to the unpaired device.

6.2.3.1 Protecting User Data

Windows protects user data with BitLocker, which encrypts the entire device; the user’s persistent keys

and secrets additionally protected by DPAPI. At the most basic level, all data on stored on the device is

encrypted by BitLocker using FIPS Approved symmetric encryption algorithms. During boot, Windows

will derive disk encryption keys (DEK) and key encryption keys (KEK) based on the BitLocker

authorization factors that unlock the device; the administrative guidance for Windows 8.1 includes the

configuration for an additional BitLocker authorization factors which is a device password, technically

known as the “Enhanced PIN”, that includes uppercase and lowercase English letters, symbols on an EN-

US keyboard, numbers, special characters and spaces. The system and user (protected) data remains

encrypted in non-volatile storage, the file system device driver uses the BitLocker FVEK (a DEK) to

decrypt the data as it is loaded into volatile storage. The only time user (protected) data is decrypted is

after the user authenticates by providing their Enhanced PIN password, for Windows 8.1, and password,

for Windows Phone. That password is used to derive the DPAPI secret (a KEK) which provides an

additional layer of protection for certain user data, including keys.

6.2.3.2 X.509 Certificate Validation

Each Windows component that uses X.509 certificates is responsible for performing certificate

validation, however all components use a common subcomponent, which validates certificates as

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 105 of 156

described in RFC 5280 including all applicable usage constraints such as Server Authentication for

networking sessions and Code Signing when installing product updates. Each component that uses X.509

certificates will have a repository for public certificates and will select a certificate based on criteria such

as entity name for the communication partner, any extended key usage constraints, and cryptographic

algorithms associated with the certificate.

If certificate validation fails, or if Windows is not able to check the validation status for a certificate,

Windows will not establish a trusted network channel (IPsec, TLS), however it will inform the user and

seek their consent before establishing a HTTPS web browsing session. Certification validation for

software installation and updates is described in section 6.2.5.6.

Modern Store Applications can use these interfaces to check the validity of certificates:

 Certificate.BuildChainAsync

 CertificateChain. Validate

6.2.3.3 SFR Mapping

 FIA_AFL_EXT.1: After the number of consecutive failed authentication attempts for a user

account has been surpassed, Windows Phone will wipe the device and Windows 8.1 and will

lock out the user account.

 FIA_BLT_EXT.1: Windows require Bluetooth mutual authentication between the Windows

device any the remote device prior to any data transfer over the Bluetooth connection.

 FIA_PAE_EXT.1: Windows conforms to IEEE 802.1X as a Port Access Entity acting in the

Supplicant role.

 FIA_PMG_EXT.1: Windows devices support logon passwords at least 15 characters in length.

Windows 8.1 and Windows Phone logon passwords can be composed from uppercase

characters, lowercase characters, digits, and special characters to be used in passwords.

 FIA_TRT_EXT.1: Windows logon component enforces a one second delay between every failed

logon.

 FIA_UAU.7: During an interactive logon, Windows echoes the users password with “*”

characters to prevent disclosure of the user’s password.

 FIA_UAU_EXT.1: The user must authenticate successfully during interactive logon and prior to

decryption of any user data stored on the device.

 FIA_UAU_EXT.2: The only actions that an unauthorized user can take when a Windows device is

locked is to bring up the authentication dialog, turn the device off, or place an emergency call.

 FIA_UAU_EXT.3: Windows requires that a user provide the correct password prior to changing

their password and when unlocking their device.

 FIA_X509_EXT.1, FIA_X509_EXT.3: Windows validates X.509 certificates according to RFC 5280

and provides OCSP and CRL services for applications to check certificate revocation status.

 FIA_X509_EXT.2: Windows uses X.509 certificates for EAP-TLS exchanges, TLS, HTTPS, IPsec,

code signing for system software updates, code signing for mobile applications, and code signing

for integrity verification.

http://tools.ietf.org/html/rfc5280
http://msdn.microsoft.com/en-us/library/windows/apps/windows.security.cryptography.certificates.certificate.buildchainasync.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/dn279161.aspx

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 106 of 156

6.2.4 Security Management

The complete set of management functions are described in Security Management (FMT), the following

table maps which activities can be done by the device user (who is considered to be a standard user in a

Windows client OS), the device administrator (who is considered to be a local administrator), and

invoked by a mobile device manager. A person who uses a Windows Phone is both a device user and the

local administrator of the device (based on the Windows security model); a person who uses a Windows

8.1 device may either be a standard user or a local administrator depending on the kind of user account

created for the person. In the terminology of the MDF PP, the device user and (device) local

administrator correspond to the FMT_MOF.1(USER) requirement and the MDM Agent corresponds to

the FMT_MOF.1(ORG) requirement because the latter refers to management capabilities after a device

has been enrolled into a MDM.

Table 6-8 Mobile Device Management Capabilities

Activity Device User Device (Local)
Administrator

MDM Agent

Configure password
policy

 Windows 8.1 Windows Phone

Configure session
locking policy

 Windows 8.1 Windows Phone

Enable/disable the VPN
protection

√ √

Enable/disable Wi-Fi,
mobile broadband
radios, Bluetooth

√ √ √

Enable/disable camera,
microphone

√ √

Specify wireless
networks (SSIDs) to
which the TSF may
connect

 √

Configure security
policy for connecting to
wireless networks

 √

Transition to the locked
state

√ √

Full wipe of protected
data

Windows Phone √

Configure application
installation policy

 √

Import keys/secrets
into the secure key
storage

√ √

Destroy imported Windows Phone √

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 107 of 156

Activity Device User Device (Local)
Administrator

MDM Agent

keys/secrets and any
other keys/secrets in
the secure key storage

Import X.509v3
certificates into the
Trust Anchor Database

 √

Remove imported
X.509v3 certificates
and any other X.509v3
certificates in the Trust
Anchor Database

 √

Enroll the TOE in
management

√ √

Remove applications √

Update system
software

 √

Install applications √

Enable/disable data
transfer capabilities
over USB port for
Windows 8.1,
Bluetooth

Windows Phone √

Enable/disable
personal Hotspot
connections, tethered
connections

√ √

Enable/disable wireless
remote access
connections except for
personal Hotspot
service, personal
Hotspot connections,
tethered connections

 √

Enable data-at rest
protection

 Windows 8.1 Windows Phone

Enable removable
media‘s data-at-rest
protection

Windows 8.1 Windows 8.1

Configure the Access
Point Name and proxy
used for
communications
between the cellular
network and other

√ √

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 108 of 156

Activity Device User Device (Local)
Administrator

MDM Agent

networks

Enable/disable display
notification in the
locked state

√ √

Wipe sensitive data Windows Phone √
Windows Phone

Alert the administrator √

Remove Enterprise
applications

 √

Approve import and
removal by
applications of X.509v3
certificates in the Trust
Anchor Database

√ √

Enable/disable cellular
voice functionality

Windows Phone Windows Phone

Enable/disable device
messaging capabilities

Windows Phone Windows Phone

Enable/disable the
cellular protocols used
to connect to cellular
network base stations

Windows Phone Windows Phone

Configure the unlock
banner

Windows Phone √

Enable/disable location
services

√ √

6.2.4.1 SFR Mapping

The Security Management function satisfies the following SFRs:

 FMT_MOF.1(USER): Windows provides the user with the capability to administer the security

functions described in the security target. The mappings to specific functions are described in

each applicable section of the TOE Summary Specification.

 FMT_MOF.1(ORG): Windows provides the authorized administrator with the capability to

administer the security functions described in the security target when the device is enrolled.

The mappings to specific functions are described in each applicable section of the TOE Summary

Specification.

 FMT_SMF.1: Windows provides the management functions that are described by

FMT_MOF.1(USER) and FMT_MOF.1(ORG).

 FMT_SMF_EXT.1: After unenrollment, Windows will remove enterprise applications and inform

the administrator that the device is no longer enrolled.

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 109 of 156

6.2.5 Protection of the TSF

6.2.5.1 Separation and Domain Isolation

The TSF provides a security domain for its own protection and provides process isolation. The security

domains used within and by the TSF consists of the following:

 Hardware

 Virtualization Partitions (Windows 8 only)

 Kernel-mode software

 Trusted user-mode processes

 User-mode Administrative tools process

The TSF hardware is managed by the TSF kernel-mode software and is not modifiable by untrusted

subjects. The TSF kernel-mode software is protected from modification by hardware execution state

and protection for both physical memory and memory allocated to a partition; an operating system

image runs within a partition. The TSF hardware provides a software interrupt instruction that causes a

state change from user mode to kernel mode within a partition. The TSF kernel-mode software is

responsible for processing all interrupts, and determines whether or not a valid kernel-mode call is

being made. In addition, the TSF memory protection features ensure that attempts to access kernel-

mode memory from user mode results in a hardware exception, ensuring that kernel-mode memory

cannot be directly accessed by software not executing in the kernel mode.

The TSF provides process isolation for all user-mode processes through private virtual address spaces

(private per process page tables), execution context (registers, program counters), and security context

(handle table and token). The data structures defining process address space, execution context and

security context are all stored in protected kernel-mode memory. All security relevant privileges are

considered to enforce TSF Protection.

User-mode administrator tools execute with the security context of the process running on behalf of the

authorized administrator. Administrator processes are protected like other user-mode processes, by

process isolation.

Like TSF processes, user processes also are provided a private address space and process context, and

therefore are protected from each other. Additionally, the TSF has the added ability to protect memory

pages using Data Execution Prevention (DEP) which marks memory pages in a process as non-executable

unless the location explicitly contains executable code. When the processor is asked to execute

instructions from a page marked as data, the processor will raise an exception for the OS to handle.

The TSF implements cryptographic mechanisms within a distinct user-mode process, where its services

can be accessed by both kernel- and user-mode components, in order to isolate those functions from

the rest of the TSF to limit exposure to possible errors while protecting those functions from potential

tampering attempts.

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 110 of 156

Furthermore, the TSF includes a Code Integrity Verification feature, also known as Kernel-mode code

signing (KMCS), whereby device drivers will be loaded only if they are digitally signed by either Microsoft

or from a trusted root certificate authority recognized by Microsoft. KMCS uses public-key cryptography

technology to verify the digital signature of each driver as it is loaded. When a driver tries to load, the

TSF decrypts the hash included with the driver using the public key stored in the certificate. It then

verifies that the hash matches the one that it computes based on the driver code using the FIPS -

certified cryptographic libraries in the TSF. The authenticity of the certificate is also checked in the same

way, but using the certificate authority's public key, which must be configured in and trusted by the

TOE.

6.2.5.1.1 Supporting Hardware

The devices used in the evaluation have the following characteristics:

Device Processor Hardware Specifications

Surface 3 Intel Atom Z8700 SoC

 Max freq.: 1.6GHz base, 2.4GHz Burst mode

 L3 Cache: 2MB

 Cores: Quad core (no Hyperthreading)

 Gfx execution units / freq.: 16 / 600
(400MHz nominal)

Memory

 Memory support: 2 and 4 GB SKUs available
using LPDDR3 1600 memory

Storage

 Storage: 64GB and 128GB SKUs available
using eMMC storage

GPU

 Gen8 PL Arch. DX11
Wireless

 Marvell 88W8897: 802.11a/b/g/n/ac 2x2
MIMO, Bluetooth 4.0

Lumia 635 Snapdragon™ 400 Quad-
core 1.2GHz ARM®
Cortex™ A7

http://infocenter.arm.com/help/index.jsp?topic
=/com.arm.doc.ddi0464f/index.html
(See Memory Management Unit)

Lumia 830 Snapdragon™ 400 Quad-
core 1.2GHz ARM®
Cortex™ A7

http://infocenter.arm.com/help/index.jsp?topic
=/com.arm.doc.ddi0464f/index.html
(See Memory Management Unit)

Table 6-9 Supporting Hardware

6.2.5.2 Protection from Implementation Weaknesses

Windows runs on processors that provide support for virtual memory and enforce restrictions to read,

write, and execute pages of virtual and physical memory. Collectively, this is known as Data Execution

Prevention (DEP). On Intel platforms, DEP is called NX (no execute), ARM platforms call DEP XN (execute

never).

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0464f/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0464f/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0464f/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0464f/index.html

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 111 of 156

The Windows kernel, user-mode applications, and all Windows Store Applications implement Address

Space Layout Randomization (ASLR) in order to load executable code at unpredictable base addresses.

The base address is generated using a pseudo-random number generator that is seeded by high quality

entropy sources when available which provides at least 8 random bits for memory mapping. 45

The Windows runtime also provides stack buffer overrun protection capability that will terminate a

process after Windows detects a potential buffer overrun on the thread’s stack by checking canary

values in the function prolog and epilog as well as reordering the stack. All Windows binaries and

Windows Store Applications implement stack buffer overrun protection by being complied with the /GS

option, which is used for all Windows binaries; and checking that all Windows Store Applications are

compiled with buffer overrun protection before ingesting the Windows Store Application into the

Windows Store.

To enable these protections using the Microsoft Visual Studio development environment, programs are

complied with /DYNAMICBASE option for ASLR, and optionally with /HIGHENTROPYVA for 64-bit ASLR,

or /NXCOMPAT:NO to opt out of software-based DEP, and /GS (switched on by default) for stack buffer

overrun protection.

Windows Store Applications are compiled with the /APPCONTAINER option which builds the executable

to run in a Windows appcontainer, to run with the user-mode protections described in this section.

6.2.5.3 Time Service

Each hardware platform supported by the TOE includes a real-time clock. The real-time clock is a device

that can only be accessed using functions provided by the TSF and serves as the reference clock that

maintains the system time. Specifically, the TSF provides functions that allow users, including the TSF

itself, to query and set the clock, as well as functions to synchronize clocks within a domain. The ability

to query the clock is unrestricted, while the ability to set the clock requires the SeSystemtimePrivilege.

This privilege is only granted to authorized administrators to protect the integrity of the time service.

Synchronizing the clocks within a managed Windows deployment is critical for cross-machine

communications and correlating activities which occur on multiple computers. Accuracy (which the NIAP

OS PP describes as “reliable and monotonically increasing” is described in How the Windows Time

Service Works. In addition this communications path can be protected using IPsec between the

computers in the Active Directory domain.

How To Configure an Authoritative Time Server in Windows Server describes additional steps a domain

administrator can take to explicitly specify the reference clock for the domain or an arbitrary NTP server.

Alternatively, devices with a mobile broadband modem can synchronize to the carrier network’s time

source.

Windows capabilities that are included in the OS protection profile evaluation which use the centralized

(i.e., reliable) time service are:

45

 The PRNG is seeded by the TPM RBG, the RDRAND instruction and other sources.

http://technet.microsoft.com/en-us/library/cc773013(v=WS.10).aspx
http://technet.microsoft.com/en-us/library/cc773013(v=WS.10).aspx
http://support.microsoft.com/kb/816042#method2

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 112 of 156

 Audit record generation

 Network expirations for authentication and data access

 Session timeout and screen locking

 X.509 certificate generation, revocation, and expiration

These capabilities use the interfaces described at http://msdn.microsoft.com/en-

us/library/ms725473(v=vs.85).aspx. Public documentation about time functions in Windows is located at

http://msdn.microsoft.com/en-us/library/ms724962(v=vs.85).aspx. This describes the different types of

time services offered to developers.

6.2.5.4 Self-Tests

The Windows self-tests are a collection of tests which verify that the Windows is operating correctly.

The self-tests are enabled when the administrator sets the “System Cryptography: Use FIPS compliant

algorithms for encryption, hashing, and signing” policy; Windows will always run the self-tests described

in this section.

The kernel-mode startup self-tests are:46

 AES-128 encrypt/decrypt EBC Known Answer Test

 AES-128 encrypt/decrypt CBC Known Answer Test

 AES-128 CMAC Known Answer Test

 AES-128 encrypt/decrypt CCM Known Answer Test

 AES-128 encrypt/decrypt GCM Known Answer Test

 RSA Known Answer Test

 ECDSA sign/verify test on P256 curve

 ECDH secret agreement Known Answer Test on P256 curve

 HMAC-SHA-1 Known Answer Test

 HMAC-SHA-256 and HMAC-SHA-512 Known Answer Tests

 SP800-56A concatenation KDF Known Answer Tests (same as Diffie-Hellman KAT)

 SP800-90 AES-256 counter mode DRBG Known Answer Tests (instantiate, generate and reseed)

 SP800-90 Dual-EC DRBG Known Answer Tests (instantiate, generate and reseed)

The Windows kernel-mode cryptographic module, the Kernel Mode Cryptographic Primitives Library,

also performs pair-wise consistency checks upon each invocation of RSA, ECDH, and ECDSA key-pair

generation and import as defined in FIPS 140-2. SP 800-56A conditional self-tests are also performed. A

continuous RNG test (CRNGT) is used for the random number generators of this cryptographic module.

All approved and non-approved RNGs have a CRNGT. The SP 800-90 DRBGs have health tests. A pair-

wise consistency test is done for Diffie-Hellman.

The Kernel Mode Cryptographic Primitives Library is loaded into the kernel’s memory early during the

boot process. If there is a failure in any startup self-test, the Kernel Mode Cryptographic Primitives

46

 When the System Cryptography policy is set, Windows will always perform these self-tests however the
evaluated configuration does not use the ECDH, HMAC, and SP800-56A algorithms.

http://msdn.microsoft.com/en-us/library/ms725473(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms725473(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms724962(v=vs.85).aspx

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 113 of 156

Library DriverEntry function will fail to return the STATUS_SUCCESS status to its caller. The only way to

recover from the failure of a startup self-test is to attempt to invoke DriverEntry again, which will rerun

the self-tests, and will only succeed if the self-tests passes.

By thoroughly exercising the cryptographic functions, Windows will prevent situations where user data

is not stored in an encrypted state.

All operations on the TSF ultimately involve the use of cryptography, and so the FIPS 140 health tests are

sufficient to determine that Windows is operating correctly.

6.2.5.5 Windows Code Integrity

A Windows operating system verifies the integrity of Windows program code using the Secure Boot and

Code Integrity capability in Windows.47 On computers with a TPM (either discrete or firmware), such as

those used in the Mobile Device evaluation, before Windows will unlock the operating system drive, it

will verify the integrity of the early boot components, which include the Boot Loader, OS Loader, and OS

Resume binaries, in order to prevent tampering and to ensure that the drive is in the same computer as

when the OS was initialized.

The Secure Boot capability Windows checks that the file integrity of early boot components has not

been compromised and ensures that the files have not been modified, which mitigates the risk of

rootkits and viruses, and that the data elements that contribute to creating the composite keys, which

will ultimately unlock the operating system drive, have not been compromised. Secure Boot collects

these file measurements and seals them to the TPM. When Secure Boot starts in the preboot

environment, it will compare the sealed values from the TPM and if those values do not match the

calculated values, Secure Boot will lock the system (which prevents booting) and display a warning on

the computer display.

After Secure Boot verifies the integrity of early-running kernel components, including Code Integrity, the

Code Integrity capability provides measures code integrity for kernel-mode and user-mode programs.

Kernel-mode code signing (KMCS) prevents kernel-mode device drivers, such as the BitLocker Drive

Encryption Drivers (fvevol.sys), from loading unless they are published and digitally signed by developers

who have been vetted by one of a handful of trusted certificate authorities (CAs). KMCS, using public-

key cryptography technologies, requires that kernel-mode code include a digital signature generated by

one of the trusted certificate authorities. When a kernel device driver tries to load, Windows decrypts

the hash included with the driver using the public key stored in the certificate, then verifies that the

hash matches the one computed with the code. The authenticity of the certificate is checked in the

same way, but using the certificate authority's public key, which is trusted by Windows. The root public

key of the certificate chain that verifies the signature must match one of the Microsoft’s root public keys

indicating that Microsoft is the publisher of the Windows image files. These Microsoft’s root public keys

are hardcoded in the Windows boot loader.

47

 In MDF PP terminology, Windows runs on the application processor.

http://technet.microsoft.com/en-us/library/cc733982(v=WS.10).aspx

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 114 of 156

The cryptography used by Secure Boot and Code Integrity is validated as part of the Windows FIPS 140

validation.

6.2.5.6 Windows and Application Updates

Updates to Windows are delivered as Microsoft Update Standalone Package files (.msu files) and are

signed by Microsoft with two digital signatures, a SHA1 signature for legacy applications and a SHA256

signature for modern applications. The RSA SHA256 digital signature is signed by Microsoft Corporation,

with a certification path through a Microsoft Code Signing certificate and ultimately the Microsoft Root

Certification Authority. These certificates are checked by the Windows Trusted Installer prior to

installing the update.

The Windows operating system will check that the certificate is valid and has not been revoked using a

standard PKI CRL. Once the Trusted Installer determines that the package is valid, it will update

Windows; otherwise the installation will abort and there will be an error message in the event log. Note

that the Windows installer will not install an update if the files in the package have lower version

numbers than the installed files.

The integrity of the Microsoft Code Signing certificate on the computer is protected by the storage root

key within the TPM, and the validated integrity of the Windows binaries as a result of Secure Boot and

Code Integrity.

Updates to Windows are delivered through the Windows Update capability, which is enabled by default,

or the user can go to http://www.microsoft.com/security/default.aspx to search and obtain security

updates on their own volition. Windows Phone users can go to Settings, and the Phone Update to search

for updates.

A user can then check that the signature is valid either by viewing the digital signature details of the file

from Windows Explorer or by using the Get-AuthenticodeSignature PowerShell Cmdlet. The

following is an example of using PowerShell:

If the Get-AuthenticodeSignature PowerShell Cmdlet or Windows Explorer could not verify the

signature, the status will be marked as invalid. This verification check uses the same functionality

described above.

http://www.microsoft.com/security/default.aspx

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 115 of 156

6.2.5.6.1 Windows Store Applications

In the same manner as checking the integrity of the Microsoft Update Packages and Windows

executable code, Windows Store Applications and their installation packages are verified using a digital

signature from Microsoft Corporation with the Code Signing usage.

6.2.5.7 SFR Mapping

The TSF Protection function satisfies the following SFRs:

 FPT_AEX_EXT.1: All Windows Store applications use address space layout randomization.

 FPT_AEX_EXT.2: The Intel and Qualcomm processors included in this evaluation enforce read,

write, and execute permissions for physical memory.

 FPT_AEX_EXT.3: Windows binaries are compiled with stack overflow protection (compiled using

the /Gs option for native applications). Appendix D: TOE Binary List contains a list of Windows

binaries along with any exceptions which do not use stack overflow protection.

 FPT_AEX_EXT.4: The Windows kernel and user-mode system services protect themselves from

modification by untrusted subject programs; moreover user-mode programs execute in

separate virtual address spaces.

 FPT_KST_EXT.1: During normal operation, Windows does not store plaintext key material in

non-volatile storage.

 FPT_KST_EXT.2: Plaintext keys are not exported from the FIPS-validated cryptographic modules.

 FPT_KST_EXT.3: Users cannot export plain text keys from Windows Store applications.

 FPT_NOT_EXT.1: Windows will fall into a non-operational state after a failure of the Windows

FIPS 140 cryptographic self-tests and integrity failure for Windows system binaries.

 FPT_STM.1: The real-time clock in each Windows platform, in conjunction with periodic domain

synchronization, for domain-joined devices, and time signals from the LTE network, provide a

reliable source of time stamps for the TSF; changing the clock can be restricted to authorized

administrators.

 FPT_TST_EXT.1: Windows runs a series of self-tests that confirm that essential cryptographic

operations are performed correctly and halts if the self-tests fail. Those cryptographic functions

are then used to check integrity of TOE executables.

 FPT_TST_EXT.2: Windows checks the integrity of the Windows boot loader, OS loader, kernel,

and system binaries and all application executable code, i.e, Windows Store Applications and

updates to Windows and Windows Store Applications.

 FPT_TUD_EXT.1: Windows provides a means to identify the current version of the Windows

software, the hardware model, and installed applications.

 FPT_TUD_EXT.2: Windows has an update mechanism to deliver updated binaries and a means

for a user to confirm that the digital signatures, which ensure the integrity of the update, are

valid for both the operating system and Windows Store Applications.

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 116 of 156

6.2.6 TOE Access

6.2.6.1 Windows 8.1

Windows provides the ability for a user to lock their interactive logon session at their own volition or

after a user-defined inactivity timeout. Windows also provides the ability for the administrator to

specify the interval of inactivity after which the session will be locked. This policy will be applied to

either the local machine or the computers within a domain using either local policy or group policy

respectively. If both the administrator and a standard user specify an inactivity timeout period, Windows

will lock the session when the shortest time period expires.

Once a user has a desktop session, they can invoke the session locking function by using the same key

sequence used to invoke the trusted path (Ctrl+Alt+Del). This key sequence is captured by the TSF and

cannot be intercepted or altered by any user process. The result of that key sequence is a menu of

functions, one of which is to lock the workstation. The user can also lock their desktop session by going

to the Start screen, selecting their logon name, and then choosing the “Lock” option.

Windows constantly monitors the mouse, keyboard, touch display, and the orientation sensor for

inactivity in order to determine if they are inactive for the specified time period. After which, Windows

will lock the workstation and execute the screen saver unless the user is streaming video such as a

movie. Note that if the workstation was not locked manually, the TSF will lock the display and start the

screen saver program if and when the inactivity period is exceeded, as well any notifications from

applications which have registered to publish the application’s badge or the badge with associated

notification text to the locked screen.48 The user has the option to not display any notifications, or

choose one Windows Store Application to display notification text, and select other applications display

their badge.

For Windows Phone the inbox Calendar, Mail, [SMS] Messaging, and Phone applications can generate

notifications, and when selected to display notification text they will show the location and time of the

upcoming and in-progress meeting, the sender and subject line of the last received email, the sender

and text from the last received SMS message, and the last phone caller and caller notification

respectively.

For Windows 8.1 the inbox Calendar, Weather, and Alarm applications can generate notifications, and

when selected to display notification text they will show the location and time of the upcoming and in-

progress meeting, the current weather conditions, and an expired alarm times. In addition, Mail

application can be configured to display a badge but not notification text.

After the computer was locked, in order to unlock their session, the user either presses a key or swipes

the display. The user must provide the Ctrl+Alt+Del key combination if the Interactive Logon: Do not

required CTRL+ALT+DEL policy is set to disabled.49 Either action will result in an authentication dialog.

48

 The badge is a logo which represents the Windows Store Application and the notification text can be items such
as a count of unread messages or an appointment.
49

 This policy is defined under Local Policies / Security Options.

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 117 of 156

The user must then re-enter their authentication data, which has been cached by the local system from

the initial logon, after which the user’s display will be restored and the session will resume. Alternately,

an authorized administrator can enter their administrator identity and password in the authentication

dialog. If the TSF can successfully authenticate the administrator, the user will be logged off, rather than

returning to the user’s session, leaving the workstation ready to authenticate a new user.

As part of establishing the interactive logon session, Windows can be configured to display a logon

banner, which is specified by the administrator, that the user must accept prior to establishing the

session.

6.2.6.2 Windows Phone

The behavior for Windows Phone is similar to Windows 8 and Windows 8.1 after an administrator-

specified period of inactivity has passed or when a user explicitly chooses to lock the device by pressing

the “lock” button. When the device has transitioned to the lock state, it will display either a photo which

was selected by the user along with any notifications, or a blank screen. When the phone transitions to

“standby” and the Glance setting is enabled, Windows Phone will display that time and notifications

received during the first fifteen idle minutes.

As part of establishing the interactive logon session, Windows can be configured to display a logon

banner, which is specified by the administrator, that the user must accept prior to establishing the

session.

6.2.6.3 SFR Mapping

The TOE Access function satisfies the following SFRs:

 FTA_SSL_EXT.1: Windows 8.1 and Windows Phone will transition to a locked state when there is

an administrator-specified period of inactivity or when the user explicitly locks the device.

 FTA_WSE_EXT.1: An authorized administrator can specify which Wi-Fi networks to connect to,

as specified in FMT_SMF.1.

 FTA_TAB.1: An authorized administrator can define and modify a banner that will be displayed

prior to allowing a user to logon.

6.2.7 Trusted Path / Channels

Windows Store applications used the HttpClient interface to establish a secure HTTPS/TLS channel.

Windows Store applications do not have access to low level interfaces to perform TLS, the HttpClient

interface supports performing TLS in the context of an HTTPS connection by passing a HTTPS Uniform

Resource Identifier (URI) to the HttpClient constructor. When a HTTPS URI is used then TLS will be used

when establishing the HTTP connection. Mobile Device Managers use HTTPS/TLS: the mobile device

authenticates against the MDM to check the identity of the MDM service, and the MDM authenticates

the client to ensure the identity of the client device.

Third party VPN Windows Store applications use the Windows.Networking.Vpn interface to establish an

IPsec VPN secure channel.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.web.http.httpclient.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.web.http.httpclient.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.web.http.httpclient.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.networking.vpn.aspx

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 118 of 156

Windows implements IEEE 802.11-2012, IEEE 802.1X and EAP-TLS to provide authenticated wireless

networking sessions when requested by the user.

6.2.7.1 The specific details for each protocol are described in section Networking

Windows has a native implementation of IEEE 802.11-2012 to provide secure wireless local area

networking (Wi-Fi). Windows uses PRF-384 in WPA2 Wi-Fi sessions and generates AES 128-bit keys using

the Windows RBG. Windows complies with the IEEE 802.11-2012 standard and interoperates with other

devices that implement the standard. TOE devices have received WPA2 certification, both Enterprise

and Personal, and Wi-Fi CERTIFIED Interoperability Certificates from the Wi-Fi Alliance:

 Surface 3 (the Marvell 8897 adapter is also certified)

 Lumia 635

 Lumia 830

Windows implements key wrapping and unwrapping according to the NIST SP 800-38F specification (the

“KW” mode) and so unwraps the Wi-Fi Group Temporal Key (GTK) which was sent by the access point.

Because the GTK was protected by AES Key Wrap when it was delivered in an EAPOL-Key frame, the GTK

is not exposed to the network.

Network Protocols.

To summarize the Trusted Path / Channel function satisfies this SFR:

 FPT_ITC_EXT.1: Windows provides several trusted network channels that protect data in transit

from disclosure, provide data integrity, and endpoint identification that is used by 802.11-2012,

802.1X, EAP-TLS, TLS, HTTPS and IPsec.

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 119 of 156

7 Protection Profile Conformance Claim
This section provides the protection profile conformance claim and supporting justifications and

rationale.

7.1 Rationale for Conformance to Protection Profile
This Security Target is in strict compliance with the Protection Profile for Mobile Device Fundamentals,

version 1.1, February 12, 2014 (MDF PP).

For all of the content incorporated from the protection profile, the corresponding rationale in that

protection profile remains applicable to demonstrate the correspondence between the TOE security

functional requirements and TOE security objectives.

The requirements in the Protection Profile for Mobile Device Fundamentals are assumed to represent a

complete set of requirements that serve to address any interdependencies. Given that all of the

functional requirements in the MDF PP have been copied into this security target, the dependency

analysis for those requirements is not reproduced here.

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 120 of 156

8 Rationale for Modifications to the Security Requirements
This section provides a rationale that describes how the Security Target reproduced the security

functional requirements and security assurance requirements from the protection profile.

8.1 Functional Requirements
This Security Target includes security functional requirements (SFRs) that can be mapped to SFRs found

in the protection profile along with SFRs that describe additional features and capabilities. The mapping

from protection profile SFRs to security target SFRs along with rationale for operations is presented in

Table 8-1 Rationale for Operations. SFR operations left incomplete in the protection profile have been

completed in this security target and are identified within each SFR in section 5.1 TOE Security

Functional Requirements.

Table 8-1 Rationale for Operations

MDF PP Requirement ST Requirement Operation & Rationale

FCS_CKM.1(1) FCS_CKM.1(ASYM KA) A selection which is allowed by the
PP.

FCS_CKM.1(2) FCS_CKM.1(ASYM AU) A selection which is allowed by the
PP.

FCS_CKM.1(3) FCS_CKM.1(WLAN) Copied from the PP without changes.

FCS_CKM.2 FCS_CKM.2 Copied from the PP without changes.

FCS_CKM_EXT.1 FCS_CKM_EXT.1 A selection which is allowed by the
PP.

FCS_CKM_EXT.2 FCS_CKM_EXT.2(128)
FCS_CKM_EXT.2(256)

Iterated and made a selection which
is allowed by the PP.

FCS_CKM_EXT.3 FCS_CKM_EXT.3 Two selections which are allowed by
the PP.

FCS_CKM_EXT.4 FCS_CKM_EXT.4 A selection which is allowed by the
PP.

FCS_CKM_EXT.5 FCS_CKM_EXT.5 A selection which is allowed by the
PP.

FCS_CKM_EXT.6 FCS_CKM_EXT.6 Copied from the PP without changes.

FCS_COP.1(1) FCS_COP.1(SYM) Two selections which are allowed by
the PP.

FCS_COP.1(2) FCS_COP.1(HASH) Two selections which are allowed by
the PP.

FCS_COP.1(3) FCS_COP.1(SIGN) A selection which is allowed by the
PP.

FCS_COP.1(4) FCS_COP.1(HMAC) Three selections which are allowed
by the PP.

FCS_COP.1(5) FCS_COP.1(PBKD) Two selections which are allowed by
the PP.

FCS_IV_EXT.1 FCS_IV_EXT.1 Copied from the PP without changes.

FCS_RBG_EXT.1 FCS_RBG_EXT.1 Three selections which are allowed
by the PP.

FCS_SRV_EXT.1 FCS_SRV_EXT.1 A selection which is allowed by the

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 121 of 156

MDF PP Requirement ST Requirement Operation & Rationale

PP and refinements to switch to the
SFR labels used in the security target.

FCS_STG_EXT.1 FCS_STG_EXT.1 Five selections which are allowed by
the PP.

FCS_STG_EXT.2 FCS_STG_EXT.2 Three selections which are allowed
by the PP.

FCS_STG_EXT.3 FCS_STG_EXT.3 A selection which is allowed by the
PP.

FCS_TLS_EXT.1 FCS_TLS_EXT.1 Three selections which are allowed
by the PP.

FCS_TLS_EXT.2 FCS_TLS_EXT.2 Two selections which are allowed by
the PP.

FCS_HTTPS_EXT.1 FCS_HTTPS_EXT.1 Copied from the PP without changes.

FDP_ACF_EXT.1 FDP_ACF_EXT.1 Copied from the PP without changes.

FDP_DAR_EXT.1 FDP_DAR_EXT.1(128)
FDP_DAR_EXT.1(256)

Iterated and made a selection which
is allowed by the PP.

FDP_DAR_EXT.2 FDP_DAR_EXT.2 Copied from the PP without changes.

FDP_STG_EXT.1 FDP_STG_EXT.1 Copied from the PP without changes.

FIA_AFL_EXT.1 FIA_AFL_EXT.1 Two assignments and a selection
which is allowed by the PP.

FIA_BLT_EXT.1 FIA_BLT_EXT.1 Copied from the PP without changes.

FIA_PAE_EXT.1 FIA_PAE_EXT.1 Copied from the PP without changes.

FIA_PMG_EXT.1 FIA_PMG_EXT.1 An assignment and a selection which
is allowed by the PP.

FIA_TRT_EXT.1 FIA_TRT_EXT.1 A selection which is allowed by the
PP.

FIA_UAU.7 FIA_UAU.7 Copied from the PP without changes.

FIA_UAU_EXT.1 FIA_UAU_EXT.1 Copied from the PP without changes.

FIA_UAU_EXT.2 FIA_UAU_EXT.2 A selection which is allowed by the
PP.

FIA_UAU_EXT.3 FIA_UAU_EXT.3 A selection which is allowed by the
PP.

FIA_X509_EXT.1 FIA_X509_EXT.1 A selection which is allowed by the
PP.

FIA_X509_EXT.2 FIA_X509_EXT.2 Four selections which are allowed by
the PP.

FIA_X509_EXT.3 FIA_X509_EXT.3 Copied from the PP without changes.

FMT_MOF.1(1) FMT_MOF.1(USER) Multiple selections which are allowed
by the PP.

FMT_MOF.1(2) FMT_MOF.1(ORG) Multiple selections which are allowed
by the PP.

FMT_SMF.1 FMT_SMF.1 Multiple selections, assignments, and
refinements which are allowed by the
PP.

FMT_SMF_EXT.1 FMT_SMF_EXT.1 Three selections which are allowed
by the PP.

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 122 of 156

MDF PP Requirement ST Requirement Operation & Rationale

FPT_AEX_EXT.1 FPT_AEX_EXT.1 Copied from the PP without changes.

FPT_AEX_EXT.2 FPT_AEX_EXT.2 Copied from the PP without changes.

FPT_AEX_EXT.3 FPT_AEX_EXT.3 Copied from the PP without changes.

FPT_AEX_EXT.4 FPT_AEX_EXT.4 Copied from the PP without changes.

FPT_KST_EXT.1(1) FPT_KST_EXT.1 Copied from the PP without changes.

FPT_KST_EXT.2 FPT_KST_EXT.2 Copied from the PP without changes.

FPT_KST_EXT.3 FPT_KST_EXT.3 Copied from the PP without changes.

FPT_NOT_EXT.1 FPT_NOT_EXT.1 Two selections which are allowed by
the PP.

FPT_STM.1 FPT_STM.1 Copied from the PP without changes.

FPT_TST_EXT.1 FPT_TST_EXT.1 Copied from the PP without changes.

FPT_TST_EXT.2 FPT_TST_EXT.2 Three selections which are allowed
by the PP.

FPT_TUD_EXT.1 FPT_TUD_EXT.1 Copied from the PP without changes.

FPT_TUD_EXT.2 FPT_TUD_EXT.2 Three selections which are allowed
by the PP.

FTA_SSL_EXT.1 FTA_SSL_EXT.1 Assignment allowed by the PP.

FTA_WSE_EXT.1 FTA_WSE_EXT.1 Copied from the PP without changes.

FTA_TAB.1 FTA_TAB.1 Copied from the PP without changes.

FTP_ITC_EXT.1 FTP_ITC_EXT.1 A selection and assignment which are
allowed by the PP.

8.2 Security Assurance Requirements
The statement of security assurance requirements (SARs) found in section 5.2 TOE Security Assurance

Requirements, is in strict conformance with the Protection Profile for Mobile Device Fundamentals.

8.3 Rationale for the TOE Summary Specification
This section, in conjunction with section 6, the TOE Summary Specification (TSS), provides evidence that

the security functions are suitable to meet the TOE security requirements.

Each subsection in section 6, TOE Security Functions (TSFs), describes a Security Function (SF) of the

TOE. Each description is followed with rationale that indicates which requirements are satisfied by

aspects of the corresponding SF. The set of security functions work together to satisfy all of the

functional requirements. Furthermore, all the security functions are necessary in order for the TSF to

provide the required security functionality.

The set of security functions work together to provide all of the security requirements as indicated in

Table 8-2. The security functions described in the TOE Summary Specification and listed in the tables

below are all necessary for the required security functionality in the TSF.

Table 8-2 Requirement to Security Function Correspondence

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 123 of 156

Requirement A

u
d

it

C
ry

p
to

gr
ap

h
ic

 P
ro

te
ct

io
n

U
se

r
D

at
a

P
ro

te
ct

io
n

I &
 A

Se
cu

ri
ty

 M
an

ag
em

e
n

t

TS
F

P
ro

te
ct

io
n

R
e

so
u

rc
e

U
ti

liz
at

io
n

TO
E

A
cc

es
s

Tr
u

st
e

d
 P

at
h

 /
 C

h
an

n
el

FCS_CKM.1(ASYM KA) X

FCS_CKM.1(ASYM AU) X

FCS_CKM.1(WLAN) X

FCS_CKM.2 X

FCS_CKM_EXT.1 X

FCS_CKM_EXT.2(128) X

FCS_CKM_EXT.2(256) X

FCS_CKM_EXT.3 X

FCS_CKM_EXT.4 X

FCS_CKM_EXT.5 X

FCS_CKM_EXT.6 X

FCS_COP.1(SYM) X

FCS_COP.1(HASH) X

FCS_COP.1(SIGN) X

FCS_COP.1(HMAC) X

FCS_COP.1(PBKD) X

FCS_IV_EXT.1 X

FCS_RBG_EXT.1 X

FCS_SRV_EXT.1 X

FCS_STG_EXT.1 X

FCS_STG_EXT.2 X

FCS_STG_EXT.3 X

FCS_TLS_EXT.1 X

FCS_TLS_EXT.2 X

FCS_HTTPS_EXT.1 X

FDP_ACF_EXT.1 X

FDP_DAR_EXT.1(128) X

FDP_DAR_EXT.1(256) X

FDP_DAR_EXT.2 X

FDP_STG_EXT.1 X

FIA_AFL_EXT.1 X

FIA_BLT_EXT.1 X

FIA_PAE_EXT.1 X

FIA_PMG_EXT.1 X

FIA_TRT_EXT.1 X

FIA_UAU.7 X

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 124 of 156

Requirement A

u
d

it

C
ry

p
to

gr
ap

h
ic

 P
ro

te
ct

io
n

U
se

r
D

at
a

P
ro

te
ct

io
n

I &
 A

Se
cu

ri
ty

 M
an

ag
em

e
n

t

TS
F

P
ro

te
ct

io
n

R
e

so
u

rc
e

U
ti

liz
at

io
n

TO
E

A
cc

es
s

Tr
u

st
e

d
 P

at
h

 /
 C

h
an

n
el

FIA_UAU_EXT.1 X

FIA_UAU_EXT.2 X

FIA_UAU_EXT.3 X

FIA_X509_EXT.1 X

FIA_X509_EXT.2 X

FIA_X509_EXT.3 X

FMT_MOF.1(USER) X

FMT_MOF.1(ORG) X

FMT_SMF.1 X

FMT_SMF_EXT.1 X

FPT_AEX_EXT.1 X

FPT_AEX_EXT.2 X

FPT_AEX_EXT.3 X

FPT_AEX_EXT.4 X

FPT_KST_EXT.1 X

FPT_KST_EXT.2 X

FPT_KST_EXT.3 X

FPT_NOT_EXT.1 X

FPT_STM.1 X

FPT_TST_EXT.1 X

FPT_TST_EXT.2 X

FPT_TUD_EXT.1 X

FPT_TUD_EXT.2 X

FTA_SSL_EXT.1 X

FTA_WSE_EXT.1 X

FTA_TAB.1 X

FTP_ITC_EXT.1 X

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 125 of 156

9 Appendix A: List of Abbreviations

Abbreviation Meaning

3DES Triple DES

ACE Access Control Entry

ACL Access Control List

ACP Access Control Policy

AD Active Directory

ADAM Active Directory Application Mode

AES Advanced Encryption Standard

AGD Administrator Guidance Document

AH Authentication Header

ALPC Advanced Local Process Communication

ANSI American National Standards Institute

API Application Programming Interface

APIC Advanced Programmable Interrupt Controller

BTG BitLocker To Go

CA Certificate Authority

CBAC Claims Basic Access Control, see DYN

CBC Cipher Block Chaining

CC Common Criteria

CD-ROM Compact Disk Read Only Memory

CIFS Common Internet File System

CIMCPP Certificate Issuing and Management Components For Basic
Robustness Environments Protection Profile, Version 1.0, April 27,
2009

CM Configuration Management; Control Management

COM Component Object Model

CP Content Provider

CPU Central Processing Unit

CRL Certificate Revocation List

CryptoAPI Cryptographic API

CSP Cryptographic Service Provider

DAC Discretionary Access Control

DACL Discretionary Access Control List

DC Domain Controller

DEP Data Execution Prevention

DES Data Encryption Standard

DH Diffie-Hellman

DHCP Dynamic Host Configuration Protocol

DFS Distributed File System

DMA Direct Memory Access

DNS Domain Name System

DS Directory Service

DSA Digital Signature Algorithm

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 126 of 156

DYN Dynamic Access Control

EAL Evaluation Assurance Level

ECB Electronic Code Book

EFS Encrypting File System

ESP Encapsulating Security Protocol

FEK File Encryption Key

FIPS Federal Information Processing Standard

FRS File Replication Service

FSMO Flexible Single Master Operation

FTP File Transfer Protocol

FVE Full Volume Encryption

GB Gigabyte

GC Global Catalog

GHz Gigahertz

GPC Group Policy Container

GPO Group Policy Object

GPOSPP US Government Protection Profile for General-Purpose Operating
System in a Networked Environment

GPT Group Policy Template

GPT GUID Partition Table

GUI Graphical User Interface

GUID Globally Unique Identifiers

HTTP Hypertext Transfer Protocol

HTTPS Secure HTTP

I/O Input / Output

I&A Identification and Authentication

IA Information Assurance

ICF Internet Connection Firewall

ICMP Internet Control Message Protocol

ICS Internet Connection Sharing

ID Identification

IDE Integrated Drive Electronics

IETF Internet Engineering Task Force

IFS Installable File System

IIS Internet Information Services

IKE Internet Key Exchange

IP Internet Protocol

IPv4 IP Version 4

IPv6 IP Version 6

IPC Inter-process Communication

IPI Inter-process Interrupt

IPsec IP Security

ISAPI Internet Server API

IT Information Technology

KDC Key Distribution Center

LAN Local Area Network

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 127 of 156

LDAP Lightweight Directory Access Protocol

LPC Local Procedure Call

LSA Local Security Authority

LSASS LSA Subsystem Service

LUA Least-privilege User Account

MAC Message Authentication Code

MB Megabyte

MMC Microsoft Management Console

MSR Model Specific Register

NAC (Cisco) Network Admission Control

NAP Network Access Protection

NAT Network Address Translation

NIC Network Interface Card

NIST National Institute of Standards and Technology

NLB Network Load Balancing

NMI Non-maskable Interrupt

NTFS New Technology File System

NTLM New Technology LAN Manager

OS Operating System

PAE Physical Address Extension

PC/SC Personal Computer/Smart Card

PIN Personal Identification Number

PKCS Public Key Certificate Standard

PKI Public Key Infrastructure

PP Protection Profile

RADIUS Remote Authentication Dial In Service

RAID Redundant Array of Independent Disks

RAM Random Access Memory

RAS Remote Access Service

RC4 Rivest’s Cipher 4

RID Relative Identifier

RNG Random Number Generator

RPC Remote Procedure Call

RSA Rivest, Shamir and Adleman

RSASSA RSA Signature Scheme with Appendix

SA Security Association

SACL System Access Control List

SAM Security Assurance Measure

SAML Security Assertion Markup Language

SAR Security Assurance Requirement

SAS Secure Attention Sequence

SD Security Descriptor

SHA Secure Hash Algorithm

SID Security Identifier

SIP Session Initiation Protocol

SIPI Startup IPI

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 128 of 156

SF Security Functions

SFP Security Functional Policy

SFR Security Functional Requirement

SMB Server Message Block

SMI System Management Interrupt

SMTP Simple Mail Transport Protocol

SP Service Pack

SPI Security Parameters Index

SPI Stateful Packet Inspection

SRM Security Reference Monitor

SSL Secure Sockets Layer

SSP Security Support Providers

SSPI Security Support Provider Interface

SPS Storage Primary Seed

SRK Storage Root Key

ST Security Target

SYSVOL System Volume

TCP Transmission Control Protocol

TDI Transport Driver Interface

TLS Transport Layer Security

TOE Target of Evaluation

TPM Trusted Platform Module

TSC TOE Scope of Control

TSF TOE Security Functions

TSS TOE Summary Specification

UART Universal Asynchronous Receiver / Transmitter

UI User Interface

UID User Identifier

UNC Universal Naming Convention

US United States

UPN User Principal Name

URL Uniform Resource Locator

USB Universal Serial Bus

USN Update Sequence Number

v5 Version 5

VDS Virtual Disk Service

VPN Virtual Private Network

VSS Volume Shadow Copy Service

WAN Wide Area Network

WCF Windows Communications Framework

WebDAV Web Document Authoring and Versioning

WebSSO Web Single Sign On

WDM Windows Driver Model

WIF Windows Identity Framework

WMI Windows Management Instrumentation

WSC Windows Security Center

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 129 of 156

WU Windows Update

WSDL Web Service Description Language

WWW World-Wide Web

X64 A 64-bit instruction set architecture

X86 A 32-bit instruction set architecture

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 130 of 156

10 Appendix B: Interfaces
This section is a list of APIs used during testing of Windows 8.1 and Windows Phone 8.1.

API Description

CryptographicBuffer.Generat
eRandom

http://msdn.microsoft.com/en-
us/library/windows/apps/xaml/windows.security.cryptography.cryptogr
aphicbuffer.generaterandom.aspx

CryptographicBuffer.Generat
eRandomNumber

http://msdn.microsoft.com/en-
us/library/windows/apps/xaml/windows.security.cryptography.cryptogr
aphicbuffer.generaterandomnumber.aspx

CryptographicEngine.Encrypt http://msdn.microsoft.com/en-
us/library/windows/apps/xaml/windows.security.cryptography.core.cry
ptographicengine.encrypt.aspx

CryptographicEngine.Decrypt http://msdn.microsoft.com/en-
us/library/windows/apps/xaml/windows.security.cryptography.core.cry
ptographicengine.decrypt.aspx

HashAlgorithmProvider.Creat
eHash

http://msdn.microsoft.com/en-
us/library/windows/apps/xaml/windows.security.cryptography.core.ha
shalgorithmprovider.createhash.aspx

HashAlgorithmProvider.Hash
Data

http://msdn.microsoft.com/en-
us/library/windows/apps/xaml/windows.security.cryptography.core.ha
shalgorithmprovider.hashdata.aspx

CryptographicEngine.Sign http://msdn.microsoft.com/en-
us/library/windows/apps/xaml/windows.security.cryptography.core.cry
ptographicengine.sign.aspx

CryptographicEngine.VerifySi
gnature

http://msdn.microsoft.com/en-
us/library/windows/apps/xaml/windows.security.cryptography.core.cry
ptographicengine.verifysignature.aspx

KeyDerivationParameters.Bui
ldForPbkdf2

http://msdn.microsoft.com/en-
us/library/windows/apps/windows.security.cryptography.core.keyderiv
ationparameters.buildforpbkdf2.aspx

AsymmetricKeyAlgorithmPro
vider.CreateKeyPair

http://msdn.microsoft.com/en-
us/library/windows/apps/xaml/windows.security.cryptography.core.asy
mmetrickeyalgorithmprovider.createkeypair.aspx

CryptographicEngine.SignAsy
nc

http://msdn.microsoft.com/en-
us/library/windows/apps/xaml/windows.security.cryptography.core.cry
ptographicengine.signasync.aspx

CryptographicEngine.SignHas
hedData

http://msdn.microsoft.com/en-
us/library/windows/apps/xaml/windows.security.cryptography.core.cry
ptographicengine.signhasheddata.aspx

CryptographicEngine.SignHas
hedDataAsync

http://msdn.microsoft.com/en-
us/library/windows/apps/xaml/windows.security.cryptography.core.cry
ptographicengine.signhasheddataasync.aspx

CryptographicEngine.VerifySi
gnatureWithHashInput

http://msdn.microsoft.com/en-
us/library/windows/apps/xaml/windows.security.cryptography.core.cry
ptographicengine.verifysignaturewithhashinput.aspx

AsymmetricKeyAlgorithmPro http://msdn.microsoft.com/en-

http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.cryptographicbuffer.generaterandom.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.cryptographicbuffer.generaterandom.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.cryptographicbuffer.generaterandom.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.cryptographicbuffer.generaterandomnumber.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.cryptographicbuffer.generaterandomnumber.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.cryptographicbuffer.generaterandomnumber.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.core.cryptographicengine.encrypt.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.core.cryptographicengine.encrypt.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.core.cryptographicengine.encrypt.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.core.cryptographicengine.decrypt.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.core.cryptographicengine.decrypt.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.core.cryptographicengine.decrypt.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.core.hashalgorithmprovider.createhash.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.core.hashalgorithmprovider.createhash.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.core.hashalgorithmprovider.createhash.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.core.hashalgorithmprovider.hashdata.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.core.hashalgorithmprovider.hashdata.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.core.hashalgorithmprovider.hashdata.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.core.cryptographicengine.sign.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.core.cryptographicengine.sign.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.core.cryptographicengine.sign.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.core.cryptographicengine.verifysignature.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.core.cryptographicengine.verifysignature.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.core.cryptographicengine.verifysignature.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.security.cryptography.core.keyderivationparameters.buildforpbkdf2.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.security.cryptography.core.keyderivationparameters.buildforpbkdf2.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.security.cryptography.core.keyderivationparameters.buildforpbkdf2.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.core.asymmetrickeyalgorithmprovider.createkeypair.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.core.asymmetrickeyalgorithmprovider.createkeypair.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.core.asymmetrickeyalgorithmprovider.createkeypair.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.core.cryptographicengine.signasync.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.core.cryptographicengine.signasync.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.core.cryptographicengine.signasync.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.core.cryptographicengine.signhasheddata.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.core.cryptographicengine.signhasheddata.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.core.cryptographicengine.signhasheddata.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.core.cryptographicengine.signhasheddataasync.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.core.cryptographicengine.signhasheddataasync.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.core.cryptographicengine.signhasheddataasync.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.core.cryptographicengine.verifysignaturewithhashinput.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.core.cryptographicengine.verifysignaturewithhashinput.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.core.cryptographicengine.verifysignaturewithhashinput.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.security.cryptography.core.asymmetrickeyalgorithmprovider.importkeypair.aspx

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 131 of 156

vider.ImportKeyPair us/library/windows/apps/windows.security.cryptography.core.asymme
trickeyalgorithmprovider.importkeypair.aspx

CertificateEnrollmentManage
r.ImportPfxDataAsync

http://msdn.microsoft.com/en-
us/library/windows/apps/windows.security.cryptography.certificates.ce
rtificateenrollmentmanager.importpfxdataasync.aspx

CmsDetachedSignature.Gene
rateSignatureAsync

http://msdn.microsoft.com/en-
us/library/windows/apps/dn298272.aspx

CmsAttachedSignature.Gener
ateSignatureAsync

http://msdn.microsoft.com/en-
us/library/windows/apps/dn298266.aspx

HttpClient http://msdn.microsoft.com/en-
us/library/windows/apps/windows.web.http.httpclient.aspx

Windows.Networking.Vpn http://msdn.microsoft.com/en-
us/library/windows/apps/windows.networking.vpn.aspxn

Certificate.BuildChainAsync http://msdn.microsoft.com/en-
us/library/windows/apps/windows.security.cryptography.certificates.ce
rtificate.buildchainasync.aspx

CertificateChain.Validate http://msdn.microsoft.com/en-
us/library/windows/apps/dn279161.aspx

Windows.Security.Cryptograp
hy.DataProtection

http://msdn.microsoft.com/en-
us/library/windows/apps/xaml/windows.security.cryptography.datapro
tection.aspx

http://msdn.microsoft.com/en-us/library/windows/apps/windows.security.cryptography.core.asymmetrickeyalgorithmprovider.importkeypair.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.security.cryptography.core.asymmetrickeyalgorithmprovider.importkeypair.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.security.cryptography.certificates.certificateenrollmentmanager.importpfxdataasync.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.security.cryptography.certificates.certificateenrollmentmanager.importpfxdataasync.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.security.cryptography.certificates.certificateenrollmentmanager.importpfxdataasync.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/dn298272.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/dn298272.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/dn298266.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/dn298266.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.web.http.httpclient.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.web.http.httpclient.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.networking.vpn.aspxn
http://msdn.microsoft.com/en-us/library/windows/apps/windows.networking.vpn.aspxn
http://msdn.microsoft.com/en-us/library/windows/apps/windows.security.cryptography.certificates.certificate.buildchainasync.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.security.cryptography.certificates.certificate.buildchainasync.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.security.cryptography.certificates.certificate.buildchainasync.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/dn279161.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/dn279161.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.dataprotection.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.dataprotection.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.dataprotection.aspx

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 132 of 156

11 Appendix C: Analysis of Special Publication 800-56A and 800-56B

11.1 Special Publication 800-56A
The source document is NIST Special Publication 800-56A, “Recommendation for Pair-Wise Key Establishment Schemes Using Discrete Logarithm

Cryptography”.

11.1.1 NIST SP 800-56A Sections

11.1.1.1 Sections 1 – 3

The first three (3) sections do not specify any “shall”, “shall not”, “should” or “should not” statements. For completeness, they are:

1. Introduction

2. Scope and Purpose

3. Definitions, Symbols and Abbreviations

11.1.1.2 Section 4 Key Establishment Schemes Overview

This section is merely a high-level explanation of what key establishment is. Section 4.1 contains the statement “shall” and is listed here for

completeness.

4.1 Key Agreement Preparations by an Owner

”Shall not”, “should”, and “should not” Options Implemented by TOE
 N/A

 Rationale for Implementation of “shall not” or “should not”
 N/A

Omission of Functionality Related to "shall" or “should”
 N/A

4.2 Key Agreement Process
4.3 DLC-based Key Transport Process

11.1.1.3 Section 5 Cryptographic Elements

5.1 Cryptographic Hash Functions

“Shall not”, “should”, and “should not” Options Implemented by TOE

http://csrc.nist.gov/publications/nistpubs/800-56A/SP800-56A_Revision1_Mar08-2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-56A/SP800-56A_Revision1_Mar08-2007.pdf

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 133 of 156

 N/A
 Rationale for Implementation of “shall not” or “should not”
 N/A

Omission of Functionality Related to "shall" or “should”
 N/A

5.2 Message Authentication Code (MAC) Algorithm

“Shall not”, “should”, and “should not” Options Implemented by TOE
 N/A

 Rationale for Implementation of “shall not” or “should not”
 N/A

Omission of Functionality Related to "shall" or “should”
 N/A

5.2.1 MacTag Computation

“Shall not”, “should”, and “should not” Options Implemented by TOE
 N/A

 Rationale for Implementation of “shall not” or “should not”
 N/A

Omission of Functionality Related to "shall" or “should”
 N/A

5.2.2 MacTag Checking

“Shall not”, “should”, and “should not” Options Implemented by TOE
 N/A

 Rationale for Implementation of “shall not” or “should not”
 N/A

Omission of Functionality Related to "shall" or “should”
 N/A

5.2.3 Implementation Validation Message

“Shall not”, “should”, and “should not” Options Implemented by TOE
 N/A

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 134 of 156

 Rationale for Implementation of “shall not” or “should not”
 N/A

Omission of Functionality Related to "shall" or “should”
 N/A

5.3 Random Number Generation

“Shall not”, “should”, and “should not” Options Implemented by TOE
 N/A

 Rationale for Implementation of “shall not” or “should not”
 N/A

Omission of Functionality Related to "shall" or “should”
 N/A

5.4 Nonces

“Shall not”, “should”, and “should not” Options Implemented by TOE
 The TOE implements random nonces.

 Rationale for Implementation of “shall not” or “should not”
 N/A

Omission of Functionality Related to "shall" or “should”
 N/A

5.5 Domain Parameters

“Shall not”, “should”, and “should not” Options Implemented by TOE
 N/A

 Rationale for Implementation of “shall not” or “should not”
 N/A

Omission of Functionality Related to "shall" or “should”
 N/A

5.5.1 Domain Parameter Generation

 This is a section header.

5.5.1.1 FFC Domain Parameter Generation

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 135 of 156

 “Shall not”, “should”, and “should not” Options Implemented by TOE
 The “should” statement is:

“If the appropriate security strength does not have an FFC parameter set, then Elliptic Curve Cryptography should be
used (see Section 5.5.1.2).”

 The “should” statement only applies to user behavior, which is outside the scope of the TOE.
 Rationale for Implementation of “shall not” or “should not”
 N/A
 Omission of Functionality Related to "shall" or “should”
 N/A

 5.5.1.2 ECC Domain Parameter Generation

“Shall not”, “should”, and “should not” Options Implemented by TOE
 N/A

 Rationale for Implementation of “shall not” or “should not”
 N/A

Omission of Functionality Related to "shall" or “should”
 N/A

5.5.2 Assurances of Domain Parameter Validity

“Shall not”, “should”, and “should not” Options Implemented by TOE
The “should” statement is:

“The application performing the key establishment on behalf of the party should determine whether or not to allow key
establishment based upon the method(s) of assurance that was used.”

The “should” statement only applies to an application, which is outside the scope of the TOE.
 Rationale for Implementation of “shall not” or “should not”
 N/A

Omission of Functionality Related to "shall" or “should”
 N/A

5.5.3 Domain Parameter Management

“Shall not”, “should”, and “should not” Options Implemented by TOE
 N/A

 Rationale for Implementation of “shall not” or “should not”
 N/A

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 136 of 156

Omission of Functionality Related to "shall" or “should”
 N/A

5.6 Private and Public Keys

 This is a section header with a brief statement as such.

5.6.1 Private/Public Key Pair Generation

 This is a section header.

5.6.1.1 FFC Key Pair Generation

“Shall not”, “should”, and “should not” Options Implemented by TOE
 N/A

 Rationale for Implementation of “shall not” or “should not”
 N/A

Omission of Functionality Related to "shall" or “should”
 N/A

5.6.1.2 ECC Key Pair Generation

“Shall not”, “should”, and “should not” Options Implemented by TOE
 N/A

 Rationale for Implementation of “shall not” or “should not”
 N/A

Omission of Functionality Related to "shall" or “should”
 N/A

5.6.2 Assurances of the Arithmetic Validity of a Public Key

“Shall not”, “should”, and “should not” Options Implemented by TOE
The “should” statement is:

“The application performing the key establishment on behalf of the owner and recipient should determine whether or
not to allow key establishment based upon the method(s) of assurance that was used.”

The “should” statement only applies to an application, which is outside the scope of the TOE.
 Rationale for Implementation of “shall not” or “should not”
 N/A

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 137 of 156

Omission of Functionality Related to "shall" or “should”
 N/A

5.6.2.1 Owner Assurances of Static Public Key Validity

“Shall not”, “should”, and “should not” Options Implemented by TOE
The “should” statement is:

“The application performing the key establishment on behalf of the owner should determine whether or not to allow
key establishment based upon the method(s) of assurance that was used.”

The “should” statement only applies to an application, which is outside the scope of the TOE.
 Rationale for Implementation of “shall not” or “should not”
 N/A

Omission of Functionality Related to "shall" or “should”
 N/A

5.6.2.2 Recipient Assurances of Static Public Key Validity

“Shall not”, “should”, and “should not” Options Implemented by TOE
The “should” statement is:

“The application performing the key establishment on behalf of the recipient should determine whether or not to allow
key establishment based upon the method(s) of assurance that was used.”

The “should” statement only applies to an application, which is outside the scope of the TOE.
 Rationale for Implementation of “shall not” or “should not”
 N/A

Omission of Functionality Related to "shall" or “should”
 N/A

5.6.2.3 Recipient Assurances of Ephemeral Public Key Validity

“Shall not”, “should”, and “should not” Options Implemented by TOE
The “should” statement is:

“The application performing the key establishment on behalf of the recipient should determine whether or not to allow
key establishment based upon the method(s) of assurance that was used.”

The “should” statement only applies to an application, which is outside the scope of the TOE.
 Rationale for Implementation of “shall not” or “should not”
 N/A

Omission of Functionality Related to "shall" or “should”

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 138 of 156

 N/A

5.6.2.4 FFC Full Public Key Validation Routine – Unimplemented

Note: Full public key validation is one of several options available for assurances of the arithmetic validity of public keys. Microsoft chose
not to implement it in the TOE.

5.6.2.5 ECC Full Public Key Validation Routine – Unimplemented

Note: Full public key validation is one of several options available for assurances of the arithmetic validity of public keys. Microsoft chose
not to implement it in the TOE.

5.6.2.6 ECC Partial Public Key Validation Routine

“Shall not”, “should”, and “should not” Options Implemented by TOE
 N/A

 Rationale for Implementation of “shall not” or “should not”
 N/A

Omission of Functionality Related to "shall" or “should”
 N/A

5.6.3 Assurances of the Possession of a Static Private Key

This section and all subsections concern Owner and Recipient user behavior, which is outside the scope of the TOE.

5.6.3.1 Owner Assurances of Possession of a Static Private Key
5.6.3.2 Recipient Assurance of Owner’s Possession of a Static Private Key
5.6.3.2.1 Recipient Obtains Assurance through a Trusted Third Party
5.6.3.2.2 Recipient Obtains Assurance Directly from the Claimed Owner
5.6.4 Key Pair Management

 This is a section header.

5.6.4.1 Common Requirements on Static and Ephemeral Key Pairs

“Shall not”, “should”, and “should not” Options Implemented by TOE
 N/A

 Rationale for Implementation of “shall not” or “should not”
 N/A

Omission of Functionality Related to "shall" or “should”

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 139 of 156

 N/A

5.6.4.2 Specific Requirements on Static Key Pairs

“Shall not”, “should”, and “should not” Options Implemented by TOE
 The “should” statement is:

“The application performing the key establishment on behalf of the recipient should determine whether or not to allow
key establishment based upon the method(s) of assurance that was used.”

 The “should” statement only applies to an application, which is outside the scope of the TOE.
 Rationale for Implementation of “shall not” or “should not”
 N/A

Omission of Functionality Related to "shall" or “should”
 N/A

5.6.4.3 Specific Requirements on Ephemeral Key Pairs

“Shall not”, “should”, and “should not” Options Implemented by TOE
1. The first instance of the word “should” is: “An ephemeral key pair should be generated as close to its time of use as

possible.” The TOE implements this.
2. The second “should” statement is:

“The application performing the key establishment on behalf of the recipient should determine whether or not to allow
key establishment based upon the method(s) of assurance that was used.”

This second instance of the word “should” only applies to an application, which is outside the scope of the TOE.
 Rationale for Implementation of “shall not” or “should not”
 N/A

Omission of Functionality Related to "shall" or “should”
N/A

5.7 DLC Primitives

“Shall not”, “should”, and “should not” Options Implemented by TOE
 N/A

 Rationale for Implementation of “shall not” or “should not”
 N/A

Omission of Functionality Related to "shall" or “should”
 N/A

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 140 of 156

5.7.1 Diffie-Hellman Primitives

 This is a section header.

5.7.1.1 Finite Field Cryptography Diffie-Hellman (FFC DH) Primitive

“Shall not”, “should”, and “should not” Options Implemented by TOE
 N/A
 Rationale for Implementation of “shall not” or “should not”
 N/A

Omission of Functionality Related to "shall" or “should”
 N/A

5.7.1.2 Elliptic Curve Cryptography Cofactor Diffie-Hellman (ECC CDH) Primitive

“Shall not”, “should”, and “should not” Options Implemented by TOE
 N/A

 Rationale for Implementation of “shall not” or “should not”
 N/A

Omission of Functionality Related to "shall" or “should”
 N/A

5.7.2 MQV Primitives -- Unimplemented

This section and all subsections (5.7.2 through 5.7.2.3.2) are MQV primitives. MQV is only one of several options available for key
establishment schemes. Microsoft chose not to implement MQV primitives in the TOE.

5.7.2.1 Finite Field Cryptography MQV (FFC MQV) Primitive – Unimplemented
5.7.2.1.1 MQV2 Form of the FFC MQV Primitive – Unimplemented
5.7.2.1.2 MQV1 Form of the FFC MQV Primitive – Unimplemented
5.7.2.2 ECC MQV Associate Value Function – Unimplemented
5.7.2.3 Elliptic Curve Cryptography MQV (ECC MQV) Primitive – Unimplemented
5.7.2.3.1 Full MQV Form of the ECC MQV Primitive – Unimplemented
5.7.2.3.2 One-Pass Form of the ECC MQV Primitive – Unimplemented

5.8 Key Derivation Functions for Key Agreement Schemes

“Shall not”, “should”, and “should not” Options Implemented by TOE
 N/A

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 141 of 156

 Rationale for Implementation of “shall not” or “should not”
 N/A

Omission of Functionality Related to "shall" or “should”
 N/A

5.8.1 Concatenation Key Derivation Function (Approved Alternative 1)

“Shall not”, “should”, and “should not” Options Implemented by TOE
 N/A

 Rationale for Implementation of “shall not” or “should not”
 N/A

Omission of Functionality Related to "shall" or “should”
 N/A

5.8.2 ASN.1 Key Derivation Function (Approved Alternative 2) – Unimplemented

11.1.1.4 Section 6 Key Agreement

This section is an explanation of three (3) categories of key agreement schemes as detailed in sections 6.1, 6.2, and 6.3. Under each category,
there are one or more subcategories that are classified by static keys usage. SP 800-56A does not mandate the implementation of all categories
and subcategories. Microsoft chose to implement a subset of all possible key agreement schemes in the TOE.

“Shall not”, “should”, and “should not” Options Implemented by TOE

N/A
 Rationale for Implementation of “shall not” or “should not”
 N/A

Omission of Functionality Related to "shall" or “should”
The “should” statement is:

“Key confirmation may be added to many of these schemes to provide assurance that the participants share the same keying
material; see Section 8 for details on key confirmation. Each party should have such assurance.”

 Microsoft chose not to implement the option of key confirmation in the TOE.

6.1 Schemes Using Two Ephemeral Key Pairs, C(2)

 This section is a header with a short explanation of the subcategories.

6.1.1 Each Party Has a Static Key Pair and Generates an Ephemeral Key Pair, C(2, 2) – Unimplemented

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 142 of 156

This section and all subsections (6.1.1 through 6.1.1.5) are optional. Microsoft chose not to implement them in the TOE.

6.1.1.1 dhHybrid1, C(2, 2, FFC DH) – Unimplemented
6.1.1.2 Full Unified Model, C(2, 2, ECC CDH) – Unimplemented
6.1.1.3 MQV2, C(2, 2, FFC MQV) – Unimplemented
6.1.1.4 Full MQV, C(2, 2, ECC MQV) – Unimplemented
6.1.1.5 Rationale for Choosing a C(2, 2) Scheme – Unimplemented

6.1.2 Each Party Generates an Ephemeral Key Pair; No Static Keys are Used, C(2, 0)

“Shall not”, “should”, and “should not” Options Implemented by TOE
 N/A

 Rationale for Implementation of “shall not” or “should not”
 N/A

Omission of Functionality Related to "shall" or “should”
 N/A

6.1.2.1 dhEphem, C(2, 0, FFC DH)

“Shall not”, “should”, and “should not” Options Implemented by TOE
 N/A
 Rationale for Implementation of “shall not” or “should not”
 N/A

Omission of Functionality Related to "shall" or “should”
 N/A

6.1.2.2 Ephemeral Unified Model, C(2, 0, ECC CDH)

“Shall not”, “should”, and “should not” Options Implemented by TOE
 N/A

 Rationale for Implementation of “shall not” or “should not”
 N/A

Omission of Functionality Related to "shall" or “should”
 N/A

6.1.2.3 Rationale for Choosing a C(2, 0) Scheme

 This section only explains the rationale.

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 143 of 156

6.2 Schemes Using One Ephemeral Key Pair, C(1)

 This section is a header with a short explanation of the subcategories.

6.2.1 Initiator Has a Static Key Pair and Generates an Ephemeral Key Pair; Responder Has a Static Key Pair, C(1, 2) – Unimplemented

This section and all subsections (6.2.1 through 6.2.1.5) are optional. Microsoft chose not to implement them in the TOE.

6.2.1.1 dhHybridOneFlow, C(1, 2, FFC DH) – Unimplemented
6.2.1.2 One-Pass Unified Model, C(1, 2, ECC CDH) – Unimplemented
6.2.1.3 MQV1, C(1, 2, FFC MQV) – Unimplemented
6.2.1.4 One-Pass MQV, C(1, 2, ECC MQV) – Unimplemented
6.2.1.5 Rationale for Choosing a C(1, 2) Scheme – Unimplemented

6.2.2 Initiator Generates Only an Ephemeral Key Pair; Responder Has Only a Static Key Pair, C(1, 1)

“Shall not”, “should”, and “should not” Options Implemented by TOE
 N/A

 Rationale for Implementation of “shall not” or “should not”
 N/A

Omission of Functionality Related to "shall" or “should”
 N/A

6.2.2.1 dhOneFlow, C(1, 1, FFC DH)

“Shall not”, “should”, and “should not” Options Implemented by TOE
 N/A
 Rationale for Implementation of “shall not” or “should not”
 N/A

Omission of Functionality Related to "shall" or “should”
 N/A

6.2.2.2 One-Pass Diffie-Hellman, C(1, 1, ECC CDH)

“Shall not”, “should”, and “should not” Options Implemented by TOE
 N/A

 Rationale for Implementation of “shall not” or “should not”
 N/A

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 144 of 156

Omission of Functionality Related to "shall" or “should”
 N/A

6.2.2.3 Rationale in Choosing a C(1, 1) Scheme

 This section only explains the rationale.

6.3 Scheme Using No Ephemeral Key Pairs, C(0, 2)

“Shall not”, “should”, and “should not” Options Implemented by TOE
 N/A

 Rationale for Implementation of “shall not” or “should not”
 N/A

Omission of Functionality Related to "shall" or “should”
 N/A

6.3.1 dhStatic, C(0, 2, FFC DH)

“Shall not”, “should”, and “should not” Options Implemented by TOE
 N/A
 Rationale for Implementation of “shall not” or “should not”
 N/A

Omission of Functionality Related to "shall" or “should”
 N/A

6.3.2 Static Unified Model, C(0, 2, ECC CDH)

“Shall not”, “should”, and “should not” Options Implemented by TOE
 N/A

 Rationale for Implementation of “shall not” or “should not”
 N/A

Omission of Functionality Related to "shall" or “should”
 N/A

6.3.3 Rationale in Choosing a C(0, 2) Scheme

 This section only explains the rationale.

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 145 of 156

11.1.1.5 Section 7 DLC-Based Key Transport

This section was not selected in the ST.

11.1.1.6 Section 8 Key Confirmation

As allowed in Section 6 Key Agreement, Microsoft chose not to implement optional key confirmation in the TOE.

11.1.1.7 Section 9 Key Recovery

“Shall not”, “should”, and “should not” Options Implemented by TOE
 N/A

 Rationale for Implementation of “shall not” or “should not”
 N/A

Omission of Functionality Related to "shall" or “should”
 N/A

11.1.1.8 Section 10 Implementation Validation

The TOE shall be proven to comply with the “shall” statements in this section as evidenced by NIST CMVP FIPS 140-2 validation certificates when

they are published on the NIST CMVP Validated FIPS 140-1 and FIPS 140-2 Cryptographic Modules website:

http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140val-all.htm

“Shall not”, “should”, and “should not” Options Implemented by TOE
 N/A

 Rationale for Implementation of “shall not” or “should not”
 N/A

Omission of Functionality Related to "shall" or “should”
 N/A

11.1.1.9 Appendices A, D, and E (Informative)

These appendices are informative and are included here for completeness.

11.1.1.10 Appendix B: Rationale for Including Identifiers in the KDF Input

This section is explanatory rationale and is included here for completeness.

http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140val-all.htm

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 146 of 156

11.1.1.11 Appendix C: Data Conversions (Normative)

“Shall not”, “should”, and “should not” Options Implemented by TOE
 N/A

 Rationale for Implementation of “shall not” or “should not”
 N/A

Omission of Functionality Related to "shall" or “should”
 N/A

11.1.2 Exceptions

11.1.2.1 TOE-Specific Extensions

There are not any TOE-specific extensions that may impact the security requirements the TOE is to enforce.

11.1.2.2 Additional Processing

There is no processing that is not included in the documents that may impact the security requirements the TOE is to enforce.

11.1.2.3 Alternative Implementations

There are no alternative implementations allowed by the documents that may impact the security requirements the TOE is to enforce.

11.2 Special Publication 800-56B
The source document is NIST Special Publication 800-56, “Recommendation for Pair-Wise Key Establishment Schemes Using Using Integer

Factorization Cryptography”.

11.2.1 NIST SP 800-56B Sections

This standard describes requirements and procedures for key establishment schemes using an asymmetric-based key agreement and key

transport scheme based on the RSA algorithm. The FCS_CKM.1(ASYM KA) security functional requirement is applicable only to the generation of

the RSA key pair that is subsequently used by key establishment operations. Therefore only the SHALL, SHOULD, SHALL NOT and SHOULD NOT

directives that are related to sections of this standard specifying requirements on the actual RSA key generation and associated cryptographic

primitives used for RSA key generation are relevant in the assurance activity for FCS_CKM.1(ASYM KA). All other sections in this standard that

are not relevant to actual RSA key generation are noted as such.

11.2.1.1 Sections 1 – 3

The first three (3) sections do not specify any relevant requirements. For completeness, they are:

http://csrc.nist.gov/publications/nistpubs/800-56B/sp800-56B.pdf
http://csrc.nist.gov/publications/nistpubs/800-56B/sp800-56B.pdf

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 147 of 156

1. Introduction

2. Scope and Purpose

3. Definitions, Symbols and Abbreviations

11.2.1.2 Section 4 Key Establishment Schemes Overview

This section is associated with key establishment processes that are based on using a generated RSA key pair and is not relevant to the actual

RSA key pair generation.

4.1 Key Establishment Preparations by an Owner
4.2 Key Agreement Process
4.3 IFC-based Key Transport Process

11.2.1.3 Section 5 Cryptographic Elements

This section describes cryptographic elements associated with RSA key pair generation or using a generated RSA key pair.

5.1 Cryptographic Hash Functions

“Shall not”, “should”, and “should not” Options Implemented by TOE
 N/A

 Rationale for Implementation of “shall not” or “should not”
 N/A

Omission of Functionality Related to "shall" or “should”
 N/A

5.2 Message Authentication Code (MAC) Algorithm

“Shall not”, “should”, and “should not” Options Implemented by TOE
 N/A

 Rationale for Implementation of “shall not” or “should not”
 N/A

Omission of Functionality Related to "shall" or “should”
 N/A

5.3 Random Bit Generation

“Shall not”, “should”, and “should not” Options Implemented by TOE

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 148 of 156

 N/A
 Rationale for Implementation of “shall not” or “should not”
 N/A

Omission of Functionality Related to "shall" or “should”
N/A

5.4 Prime Number Generators

“Shall not”, “should”, and “should not” Options Implemented by TOE
 N/A
 Rationale for Implementation of “shall not” or “should not”
 N/A

Omission of Functionality Related to "shall" or “should”
 N/A

5.5 Primality Testing Methods

“Shall not”, “should”, and “should not” Options Implemented by TOE
 N/A

 Rationale for Implementation of “shall not” or “should not”
 N/A

Omission of Functionality Related to "shall" or “should”
 N/A

5.6 Nonces

“Shall not”, “should”, and “should not” Options Implemented by TOE
 The TOE implements random nonces.

 Rationale for Implementation of “shall not” or “should not”
 N/A

Omission of Functionality Related to "shall" or “should”
 N/A

5.7 Symmetric Key-Wrapping Algorithms

This section describes symmetric key-wrapping algorithms that is not relevant to the generation of RSA key pairs and hence is not
relevant in assurance activity for FCS_CKM.1(ASYM KA).

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 149 of 156

5.8 Mask Generation Function (MGF)

This section describes a mechanism for use with the RSA-OAEP based schemes associated with key transport operations that use RSA
key pairs and is is not relevant to the actual generation of those key pairs and hence is not relevant in assurance activity for
FCS_CKM.1(ASYM KA).

5.8.1 Concatenation Key Derivation Function (Approved Alternative 1)
5.8.2 ASN.1 Key Derivation Function (Approved Alternative 2)

5.9 Key Derivation Functions for Key Establishment Schemes

This section describes a mechanism for deriving shared keying material from a shared secret between entities that use generated RSA
key pairs and is not relevant to the actual generation of those key pairs and hence is not relevant in assurance activity for
FCS_CKM.1(ASYM KA).

5.9.1 Concatenation Key Derivation Function (Approved Alternative 1)
5.9.2 ASN.1 Key Derivation Function (Approved Alternative 2)

11.2.1.4 Section 6 RSA Key Pairs

This section describes RSA key pair generation, some of which are relevant to RSA key generation and some of which are not relevant. All non-

relevant sub-sections are included for completeness.

6.1 General Requirements

“Shall not”, “should”, and “should not” Options Implemented by TOE
From item (7):
“The owner of the key pair (or agents trusted to act on behalf of the owner) should determine that the methods used for
obtaining these assurances are sufficient and appropriate to meet the security requirements of the owner’s intended
application(s).”

The “should” statement only applies to user/application behavior and is not relevant to RSA key pair generation.

From item (8):
The recipient of a public key (or agents trusted to act on behalf of the recipient) should determine which method(s) for
obtaining these assurances are sufficient and appropriate to meet the security requirements of the owner’s intended
application(s). The application performing the key establishment on behalf of the recipient should determine whether or not to

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 150 of 156

allow the key establishment, based upon the method(s) used to obtain this assurance. Such knowledge may be explicitly
provided to the application in some manner, or may be implicitly provided by the operation of the application itself.

The “should” statements only apply to user/application behavior and are not relevant to RSA key pair generation.

From item (9):
The recipient of a public key (or agents trusted to act on behalf of the recipient) should determine that the method used for
obtaining this assurance is sufficient and appropriate to meet the security requirements of the recipient’s intended
application(s).

The “should” statements only apply to user/application behavior and is not relevant to RSA key pair generation.

Rationale for Implementation of “shall not” or “should not”
 N/A

Omission of Functionality Related to "shall" or “should”
 Use of “should” statement is described immediately above.

6.2 Criteria for RSA Key Pairs for Key Establishment

This section does not specify any “shall”, “shall not”, “should” or “should not” statements.

6.2.1 Definition of a Key Pair

 “Shall not”, “should”, and “should not” Options Implemented by TOE
 N/A

 Rationale for Implementation of “shall not” or “should not”
 N/A

Omission of Functionality Related to "shall" or “should”
 N/A

6.2.2 Formats

“Shall not”, “should”, and “should not” Options Implemented by TOE
 N/A

 Rationale for Implementation of “shall not” or “should not”
 N/A

Omission of Functionality Related to "shall" or “should”
 N/A

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 151 of 156

6.2.3 Parameter Length Sets

“Shall not”, “should”, and “should not” Options Implemented by TOE
 N/A

 Rationale for Implementation of “shall not” or “should not”
 N/A

Omission of Functionality Related to "shall" or “should”
 N/A

6.3 RSA Key Pair Generators

“Shall not”, “should”, and “should not” Options Implemented by TOE
 N/A

 Rationale for Implementation of “shall not” or “should not”
 N/A

Omission of Functionality Related to "shall" or “should”
 N/A

6.3.1 RSAKPG1 Family: RSA Key Pair Generation with a Fixed Public Exponent

This section and its subsections do not specify any “shall”, “shall not”, “should” or “should not” statements.

6.3.1.1 rsakpg1-basic
6.3.1.2 rsakpg1-prime-factor
6.3.1.3 rsakpg1-crt

6.3.2 RSAKPG2 Family: RSA Key Pair Generation with a Random Public Exponent

This section and its subsections do not specify any “shall”, “shall not”, “should” or “should not” statements.

6.3.2 RSAKPG2 Family: RSA Key Pair Generation with a Random Public Exponent
6.3.2.1 rsakpg2-basic
6.3.2.2 rsakpg2-prime-factor
6.3.2.3 rsakpg2-crt

6.4 Assurances of Validity

This section and its subsections describe assurance of RSA key pair validity that only applies to the owner or recipient of a RSA key pair,
which is outside the scope of the TOE.

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 152 of 156

6.4.1 Assurance of Key Pair Validity
6.4.1.1 General Method for Obtaining Owner Assurance of Key Pair Validity
6.4.1.2 RSAKPV1 Family: RSA Key Pair Validation with a Fixed Exponent
6.4.1.2.1 rsakpv1-basic
6.4.1.2.2 rsakpv1-prime-factor
6.4.1.3 RSAKPV2 Family: RSA Key Pair Validation with a Random Exponent
6.4.1.3.1 rsakpv2-basic
6.4.1.3.2 rsakpv2-prime-factor
6.4.2 Recipient Assurances of Public Key Validity
6.4.2.1 General Method for Obtaining Assurance of Public Key Validity
6.4.2.2 Partial Public Key Validation for RSA

6.5 Assurances of Private Key Possession

This section and its subsections describe owner assurance of private key possession by applications, which is outside the scope of the
TOE.

6.5.1 Owner Assurance of Private Key Possession
6.5.2 Recipient Assurance of Owner’s Possession of a Private Key
6.5.2.1 Recipient Indirectly Obtains Assurance of Possession Using a Trusted Third Party
6.5.2.2 Recipient Obtains Assurance of Possession Directly from the Claimed Owner

6.6 Key Confirmation

This section and its subsections describe an application process applied by provider and recipient entities that uses their respective RSA
key pairs to confirm they have a shared secret, which is outside the scope of the TOE.

6.6.1 Unilateral Key Confirmation for Key Establishment Schemes
6.6.2 Bilateral Key Confirmation for Key Establishment Schemes

6.7 Authentication

This section and its subsections do not specify any “shall”, “shall not”, “should” or “should not” statements.

11.2.1.5 Section 7 IFC Primitives and Operations

This section and its subsection are concerned with applications establishing keying material for a secret shared between two entities
using a RSA key pair, which is outside the scope of the TOE.

7.1 Encryption and Decryption Primitives

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 153 of 156

7.1.1 RSAEP
7.1.2 RSADP
7.2 Encryption and Decryption Operations
7.2.1 RSA Secret Value Encapsulation (RSASVE)
7.2.1.1 RSASVE Components
7.2.1.2 RSASVE Generate Operation
7.2.1.3 RSASVE Recovery Operation
7.2.2 RSA with Optimal Asymmetric Encryption Padding (RSA-OAEP)
7.2.2.1 RSA-OAEP Components
7.2.2.2 RSA-OAEP Encryption Operation
7.2.2.3 RSA-OAEP Decryption Operation
7.2.3 RSA-based Key-Encapsulation Mechanism with a Key-Wrapping Scheme (RSA-KEM-KWS)
7.2.3.1 RSA-KEM-KWS Components
7.2.3.2 RSA-KEM-KWS Encryption Operation
7.2.3.3 RSA-KEM-KWS Decryption Operation

11.2.1.6 Section 8 Key Agreement Schemes

This section and its subsection are concerned with applications deriving keys based on a secret shared between two entities that was
established using a RSA key pair, which is outside the scope of the TOE.

8.1 Common Components for Key Agreement
8.2 The KAS1 Family
8.2.1 KAS1 Family Prerequisites
8.2.2 KAS1-basic
8.2.3 KAS1 Key Confirmation
8.2.3.1 KAS1 Key Confirmation Components
8.2.3.2 KAS1-responder-confirmation
8.2.4 KAS1 Security Properties
8.3 The KAS2 Family
8.3.1 KAS2 Family Prerequisites
8.3.2 KAS2-basic
8.3.3 KAS2 Key Confirmation
8.3.3.1 KAS2 Key Confirmation Components
8.3.3.2 KAS2-responder-confirmation
8.3.3.3 KAS2-initiator-confirmation

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 154 of 156

8.3.3.4 KAS2-bilateral-confirmation
8.3.4 KAS2 Security Properties

11.2.1.7 Section 9 IFC based Key Transport Schemes

This section and its subsection are concerned with transferring keying material between sender and receiver entities using a RSA key pair,
which is outside the scope of the TOE.

9.1 Additional Input

9.2 KTS-OAEP Family: Key Transport Using RSA-OAEP
9.2.1 KTS-OAEP Family Prerequisites
9.2.2 Common components
9.2.3 KTS-OAEP-basic
9.2.4 KTS-OAEP Key Confirmation
9.2.4.1 KTS-OAEP Common Components for Key Confirmation
9.2.4.2 KTS-OAEP-receiver-confirmation
9.2.5 KTS-OAEP Security Properties
9.3 KTS-KEM-KWS Family: Key Transport using RSA-KEM-KWS
9.3.1 KTS-KEM-KWS Family Prerequisites
9.3.2 Common Components of the KTS-KEM-KWS Schemes
9.3.3 KTS-KEM-KWS-basic
9.3.4 KTS-KEM-KWS Key Confirmation
9.3.4.1 KTS-KEM-KWS Common Components for Key Confirmation
9.3.4.2 KTS-KEM-KWS-receiver-confirmation
9.3.5 KTS-KEM-KWS Security Properties

11.2.1.8 Section 10 Key Recovery

This section and its subsections do not specify any “shall”, “shall not”, “should” or “should not” statements.

11.2.1.9 Section 11 Implementation Validation

The TOE shall be proven to comply with the “shall” statements in this section as evidenced by NIST CMVP FIPS 140-2 validation

certificates when they are published on the NIST CMVP Validated FIPS 140-1 and FIPS 140-2 Cryptographic Modules website:

http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140val-all.htm

“Shall not”, “should”, and “should not” Options Implemented by TOE

http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140val-all.htm

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 155 of 156

 N/A
 Rationale for Implementation of “shall not” or “should not”
 N/A

Omission of Functionality Related to "shall" or “should”
 N/A

11.2.1.10 Appendix A: Summary of Differences between this Recommendation and ANS X9.44 (Informative)

This section and its subsections do not specify any “shall”, “shall not”, “should” or “should not” statements.

11.2.1.11 Appendix B: Data Conversions (Normative)

“Shall not”, “should”, and “should not” Options Implemented by TOE
 N/A

 Rationale for Implementation of “shall not” or “should not”
 N/A

Omission of Functionality Related to "shall" or “should”
 N/A

11.2.1.12 Appendix C: Prime Factor Recovery (Normative)

This section and its subsections do not specify any “shall”, “shall not”, “should” or “should not” statements.

11.2.1.13 Appendix D: References (Informative)

This section and its subsections do not specify any “shall”, “shall not”, “should” or “should not” statements.

Windows 8.1 and Windows Phone 8.1 Security Target

Microsoft © 2015 Page 156 of 156

12 Appendix D: TOE Binary List
Please send mail to wincc@microsoft.com if you would like a list of the Windows binaries included in this evaluation.

mailto:wincc@microsoft.com

