

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 1/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

Security Target Lite
ID-One COSMO v9.1

Edition: 3

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 2/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

DOCUMENT EVOLUTION

Version Issue Date Author Purpose

1 09/12/2019 IDEMIA Initial version

2 20/01/2020 IDEMIA
Second version based on the full security target
(Reference: FQR 110 9246 Ed 5)

3 11/02/2020 IDEMIA
Version based on the full security target (Reference:
FQR 110 9246 Ed 6)

© IDEMIA. All rights reserved.

Specifications and information are subject to change without notice.

The products described in this document are subject to continuous development and improvement.

All trademarks and service marks referred to herein, whether registered or not in specific countries, are the properties of their respective owners.

- Printed versions of this document are uncontrolled -

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 3/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

Table of contents

1 SECURITY TARGET INTRODUCTION .. 7

1.1 SECURITY TARGET REFERENCE ... 7
1.2 TOE REFERENCE .. 7
1.3 SECURITY TARGET OVERVIEW.. 7
1.4 REFERENCES ... 8
1.5 ACRONYMS AND NOTATIONS ..10

1.5.1 Abbreviations ..10
1.5.2 Definitions ..10

1.6 TOE OVERVIEW ..12
1.6.1 TOE Type ...12
1.6.2 TOE usage ..12

1.7 PRODUCT ARCHITECTURE ..13
1.7.1 Logical scope of the TOE ...13
1.7.2 Physical scope of the TOE ..13
1.7.3 TOE Guidance ...15
1.7.4 Platform isolation ..16
1.7.5 Applications ..16

1.8 TOE DESCRIPTION ..17
1.8.1 Defensive Java Card Platform ..17
1.8.2 Global Platform ...17
1.8.3 Integrated Circuit (IC) ...18
1.8.4 Operating System (OS) ..18

1.9 MAJOR SECURITY FEATURES OF THE TOE ..20
1.10 NON-TOE HW/SW/FW AVAILABLE TO THE TOE ..23
1.11 LIFE-CYCLE..24

1.11.1 Phase 1: Security IC Embedded Software development ...25
1.11.2 Phase 2: Security IC Development ...25
1.11.3 Phase 3 and phase 4: Security IC Manufacturing and packaging25
1.11.4 Phase 5: Composite Product Integration ...25
1.11.5 Phase 6: Composite Product Personalisation ...25
1.11.6 Phase 7: Operational Usage ...25

2 CONFORMANCE CLAIM ... 26

2.1 COMMON CRITERIA CONFORMANCE CLAIM ...26
2.2 PROTECTION PROFILE CLAIM ..26
2.3 CONFORMANCE RATIONALE ..26

2.3.1 TOE SAR conformance ..26
2.3.2 TOE Type conformance ...26
2.3.3 SPD Statement Consistency ...27

3 SECURITY ASPECTS .. 28

3.1 CONFIDENTIALITY..28
3.2 INTEGRITY ...28
3.3 UNAUTHORIZED EXECUTIONS ..29
3.4 BYTECODE VERIFICATION...29

3.4.1 CAP file verification ...29
3.4.2 Integrity and authentication ...30
3.4.3 Linking and authentication ...30

3.5 CARD MANAGEMENT ...30
3.6 SERVICES ..31

4 SECURITY PROBLEM DEFINITION ... 33

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 4/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

4.1 ASSETS ...33
4.1.1 User data ...33
4.1.2 TSF data ...34
4.1.3 Additional assets ...34

4.2 USERS / SUBJECTS ...35
4.2.1 Additional Users / Subjects ..35
4.2.2 Miscellaneous ...36

4.3 THREATS ...37
4.3.1 CONFIDENTIALITY ..37
4.3.2 INTEGRITY ...37
4.3.3 IDENTITY USURPATION ..38
4.3.4 UNAUTHORIZED EXECUTION ..39
4.3.5 DENIAL OF SERVICE ...39
4.3.6 CARD MANAGEMENT ...39
4.3.7 SERVICES ...39
4.3.8 MISCELLANEOUS ..40
4.3.9 Additional threats ..40

4.4 ORGANISATIONAL SECURITY POLICIES ..40
4.5 ASSUMPTIONS ..41

5 SECURITY OBJECTIVES .. 42

5.1 SECURITY OBJECTIVES FOR THE TOE ...42
5.1.1 IDENTIFICATION ..42
5.1.2 EXECUTION ..42
5.1.3 SERVICES ...43
5.1.4 OBJECT DELETION ..44
5.1.5 APPLET MANAGEMENT ..44
5.1.6 Additional security objectives for the TOE ...44

5.2 SECURITY OBJECTIVES FOR THE OPERATIONAL ENVIRONMENT ..46
5.3 SECURITY OBJECTIVES RATIONALE...47

5.3.1 Threats ..47
5.3.2 Organisational Security Policies ..52
5.3.3 Assumptions ...53
5.3.4 SPD and Security Objectives ..53

6 EXTENDED REQUIREMENTS ... 58

6.1 EXTENDED FAMILIES ..58
6.1.1 Extended Family FCS_RNG - Random Number Generation58

7 SECURITY REQUIREMENTS .. 59

7.1 SECURITY FUNCTIONAL REQUIREMENTS ..59
7.1.1 CoreG_LC Security Functional Requirements ...63
7.1.2 InstG Security Functional Requirements ...78
7.1.3 ADELG Security Functional Requirements ...81
7.1.4 ODELG Security Functional Requirements ...84
7.1.5 CarG Security Functional Requirements ..85

7.2 SECURITY ASSURANCE REQUIREMENTS .. 105
7.3 SECURITY REQUIREMENTS RATIONALE .. 105

7.3.1 Objectives .. 105
7.3.2 Rationale tables of Security Objectives and SFRs ... 112
7.3.3 Rationale table with objectives defined in ANSSI-CC-Note 06 119
7.3.4 Dependencies ... 120
7.3.5 Rationale for the Security Assurance Requirements ... 125

8 TOE SUMMARY SPECIFICATION ... 126

8.1 TOE SUMMARY SPECIFICATION ... 126

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 5/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

8.2 SFRS AND TSS ... 133
8.2.1 SFRs and TSS - Rationale .. 133
8.2.2 Association tables of SFRs and TSS .. 147

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 6/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

Table of figures

Figure 1: Java Card Platform Architecture ..13
Figure 2: View of the smart card and pins ..14

Table of tables

Table 1: Guidance references ..15
Table 2: TOE Life (options a and b) ...24
Table 3: TOE Life (option c) ..24
Table 4: CC conformance rationale ..26
Table 5 Threats and Security Objectives - Coverage ..54
Table 6 Security Objectives and Threats - Coverage ..55
Table 7 OSPs and Security Objectives - Coverage ..56
Table 8 Security Objectives and OSPs - Coverage ..56
Table 9 Assumptions and Security Objectives for the Operational Environment - Coverage57
Table 10 Security Objectives for the Operational Environment and Assumptions - Coverage57
Table 11 Security Objectives and SFRs - Coverage .. 115
Table 12 SFRs and Security Objectives ... 119
Table 13 Security Objectives Vs Note 06 Objectives ... 119
Table 14 SFRs Dependencies ... 123
Table 15 SARs Dependencies ... 125
Table 16 SFRs and TSS – Coverage .. 150

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 7/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

1 SECURITY TARGET INTRODUCTION

This Security Target Lite aims to satisfy the requirements of Common Criteria level EAL5 augmented
with AVA_VAN.5 and ALC_DVS.2 in defining the security enforcing functions of the TOE and describing

the environment in which it operates.

The Security Target describes the composite evaluation of the IDEMIA Java Card open platform on the
Infineon (hareafter called IFX) Integrated Circuit.

Application note

This TOE claims an assurance level EAL5 augmented with ALC_DVS.2 and AVA_VAN.5. AVA_VAN.5

implies that the TOE is resistant to attacks performed by an attacker possessing "High Attack Potential".
Not all key sizes specified in this security target have sufficient cryptographic strength for satisfying the

AVA_VAN.5 “High Attack Potential”. In order to be protected against attackers with a "High Attack
Potential", sufficiently large cryptographic key sizes SHALL be configured for this TOE. Please refer to

national and international document standards for more and up-to-date details.

1.1 Security Target Reference
Title Security Target Lite ID-One COSMO v9.1

Editor IDEMIA

IDEMIA registration FQR 110 9395

Revision Ed 3

EAL EAL5 augmented with: ALC_DVS.2 and AVA_VAN.5

ITSEF CEA-LETI

Certification Body ANSSI

1.2 TOE Reference
Product Commercial

Names

ID-One COSMO v9.1 Platform

IC
Infineon SLC32 certified by the German BSI certification body (BSI-

DSZ-CC-1110-V2-2019)

TOE Name ID-One COSMO v9.1

TOE version SAAAAR Code: 092914

TOE Documentations Refer to Section 1.7.3 TOE Guidance

The TOE and the product differ, as further explained in the architecture of the product. The TOE is the

Java Card System (JCS) Open Platform of the ID-One Cosmo v9.1 product and the TOE may also include

applets.

The TOE is identified by the tag identity which provides information on the product and allows identifying
each product configuration in term of features included or not in each specific product configuration.

Information and values to identified TOE are described in [R32].

1.3 Security Target Overview
The main objectives of this Security Target are to:

 Introduce the JCS Platform,

 Define the scope of the TOE and its security features

 Describe the security environment of the TOE, including the assets to be protected and the

threats to be countered by the TOE and its environment during the product development,

production and usage.

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 8/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

 Describe the security objectives of the TOE and its environment supporting in terms of
integrity and confidentiality of application data and programs and of protection of the TOE.

 Specify the security requirements which include the TOE security functional requirements, the

TOE assurance requirements and TOE security functions.

1.4 References

Ref Document details

[R1]
"Common Criteria for information Technology Security Evaluation, Part 1: Introduction and
general model", April 2017, Version 3.1 revision 5.

[R2]
"Common Criteria for information Technology Security Evaluation, Part 2: Security Functional
component", April 2017, Version 3.1 revision 5.

[R3]
"Common Criteria for information Technology Security Evaluation, Part 3: Security Assurance
components", April 2017, Version 3.1 revision 5.

[R4]
Joint Interpretation Library, Assurance Continuity – Practical cases for Smart Cards and similar
devices, Version 1.0 November 2017

[R5]
Java Card System – Open Configuration Protection Profile, Version 3.0.5 December 2017, BSI-
CC-PP-0099-2017

[R6]
"Java Card 3.0.5 Classic - API"
Application Programming Interfaces, Version 3.0.5, 2015, Oracle Technology Network

[R7]
"Java Card – JCRE” Runtime Environment Specification, Classic Edition
Version 3.0.5, 2015, Oracle Technology Network

[R8]
"Java Card 3.0.5 - Virtual Machine Specifications"
Virtual Machine Java Card™ Platform, Version 3.0.5, 2015, Oracle Technology Network

[R9]
“GlobalPlatform Card Specification“
Version 2.3.1 Public Release - March 2018
Document Reference: GPC_SPE_034

[R10]
ANSI x9.62-2005 Public Key Cryptography for the Financial Services Industry – The Elliptic
Curve Digital Signature Algorithm (ECDSA)

[R11] Joint Interpretation Library, Guidance for smartcard evaluation, v2-0

[R12]

GlobalPlatform Card Technology - Secure Channel Protocol '03', Card Specification v2.2 –
Amendment D”
Version 1.1.1 - Public Release July 2014
Document Reference: GPC_SPE_014

[R13]

GlobalPlatform Card Technology - Security Upgrade for Card Content Management, Card
Specification v2.2 - Amendment E”
Version 1.0 – Public Release November 2011
Document Reference: GPC_SPE_042

[R14]
The NIST SP 800-90 Recommendation for Random Number Generation Using Deterministic
Random Bit Generators (Revise)
March 2007

[R15]
"Digital Signatures using Reversible Public Key Cryptography for the Financial Services Industry
(rDSA)"
ANSI X9.31-1998, American Bankers Association

[R16]
"FIPS PUB 46-3, Data Encryption Standard"
October 25, 1999 (ANSI X3.92), National Institute of Standards and Technology

[R17]
"FIPS PUB 81, DES Modes of Operation"
April 17, 1995, National Institute of Standards and Technology

[R18]
"FIPS PUB 180-3, Secure Hash Standard"
October 2008 , National Institute of Standards and Technology

[R19]
Certification of « open » smart card products, Version 1.1 (for trial use),
 4 February 2013.

[R20] "Public Key Cryptography using RSA for the financial services industry"

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 9/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

ISO/IEC 9796-1, annex A, section A.4 and A.5, and annex C (1995)

[R21]
“Information technology – Security techniques: Data integrity mechanism using a cryptographic
check function employing a block cipher algorithm”
ISO/IEC 9797-1 (1999) , International Organization for Standardization

[R22]
“FIPS PUB 140-2, Security requirements for cryptographic modules”
Mars 2002 , National Institute of Standards and Technology

[R23]
PKCS#1 The public Key Cryptography standards
RSA Data Security Inc. 1993

[R24]
Security IC Platform Protection Profile with Augmentation Packages Version 1.0, 13 January
2014, BSI-CC-PP-0084-2014

[R25]
FIPS PUB 197, The Advanced Encryption Standard (AES)
U.S. DoC/NIST, November 26, 2001.

[R26]

Public Security Target, BSI-DSZ-CC-1110-V2-2019, Version 1.6, 05.06.2019, “Public Security

Target IFX_CCI_000003h, IFX_CCI_000005h, IFX_CCI_000008h, IFX_CCI_00000Ch,
IFX_CCI_000013h, IFX_CCI_000014h, IFX_CCI_000015h, IFX_CCI_00001Ch,
IFX_CCI_00001Dh, IFX_CCI_000021h, IFX_CCI_000022h design step H13”, Infineon
Technologies AG (sanitised public document)

[R27] IEEE Std 1363a-2004 Standard Specification of Public-Key Cryptography

[R28]
The Java Virtual Machine Specification. Lindholm, Yellin
ISBN 0-201-43294-3

[R29]
Java Card 3 Platform Off-card Verification Tool Specification, Classic Edition, Version 1.0.
Published by Oracle

[R30]
Java Card System Standard 2.2 Configuration Protection Profile – PP/0305
Version 1.0b – August 2003

[R31] ID-One COSMO v9.1 Applet Security Recommendations, FQR 110 9237 Ed2

[R32] ID-One COSMO v9.1 Reference Guide, FQR 110 9200 Ed4

[R33] ID-One COSMO v9.1 Pre-Perso Guide, FQR 110 9208 Ed6

[R34] ID-One COSMO v9.1 Application Loading Protection Guidance, FQR 110 9238 Ed1

[R35] ID-One COSMO v9.1 platform - Javadoc, FQR 110 9242 Ed1

[R36] IDEMIA Platform Flash Generation, FQR 110 9402 Ed1

[R37] Secure acceptance and delivery of sensitive elements, FQR 110 8921 Ed1

[R38] JCVM Patch, FQR 110 8805 Ed2

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 10/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

1.5 Acronyms and Notations

1.5.1 Abbreviations
AES Advanced Encryption Standard
AID Applet Identifier
APDU Application Protocol Data Unit
API Application Programmer Interface
BIOS Basic Input/Output System
CC Common Criteria
CM Card Manager
DAP Data Authentication Pattern
DES Cryptographic module "Data Encryption Standard"
EAL Evaluation Assurance Level
EC Elliptic Curves
GP Global Platform
IC Integrated Circuit
ISD Issuer Security Domain
IT Information Technology
JCRE Java Card Runtime Environment
ISK Initialization Secret Key
JSK JPatch Secret Key
LSK Load Secret Key
MOC Match-On-Card
MSK Master Secret Key
OSP Organizational Security Policy
PP Protection Profile
RNG Random Number Generation
RSA Cryptographic module "Rivest, Shamir, Adleman"
SF Security Function
SFP Security Function Policy
SHA Secure Hash Algorithm
ST Security Target
TOE Target of Evaluation
TSF TOE Security Function
VM Virtual Machine

1.5.2 Definitions

Applet
Application which can be loaded and executed with the environment of

the Java Card platform

Applet developer

The one who is in charge of the Applet development intended to be

loaded on the platform. He/she is the recipient of the in order to respect

recommendations, if any, identified by the platform evaluation. These
recommendations shall be followed by the applet developer and shall be

checked before loading the application on the platform.

Card Issuer Entity that owns the card and is ultimately responsible for the behaviour

of the card

Card Manager
Main entity which represents the issuer and supervises the whole services
available on the card. The Card Manager entity encompasses the Open

and the Issuer Security domain.

DAP
Part of the Load File used for ensuring authenticity of the Load File. The

DAP is the signature of the Load File Data Block Hash and is provided

during the loading.

Issuer Security Domain
The primary on-card entity providing support for the control, security,

and communication requirements of the Card Issuer.

Load File Data Block

Hash or LoadFile

The Load File Data Block Hash provides integrity of the Load File Data
Block following receipt of the complete Load File Data Block.

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 11/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

OPEN

Part of the Card Manager entity which has the responsibilities to provide

an API to applications, command dispatch, Application selection, logical

channel management, and Card Content management. The OPEN also
manages the installation of applications loaded to the card. The OPEN is

responsible for enforcing the security policy defined for Card Content
management.

Security Domain
On-card entity providing support for the control, security, and
communication requirements of an off-card entity (e.g. the Card Issuer,

an Application Provider or a Controlling Authority).

MOC
The MOC technology consists in registering the fingerprints (or their
template) on a smart card or a USB key, the card being unlocked using

the finger that functions as code.

MSK

Master Secret Key for authentication used to authenticate the card

Manufacturer. This key has a given value (i.e. MSK value) and its try

counter, i.e. MSK Key counter (as for a PIN). Once the try limit counter is
reached, the authentication is no more possible with this key.

LSK Secret Key used by the OS developer (the TOE developer) to encrypt
locks and ISK keys.

JSK Secret key used for patch loading.

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 12/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

1.6 TOE Overview

1.6.1 TOE Type

The ID-One COSMO V9.1 platform on IFX chip is a dual Java Card platform based, compatible with

multi-application ID-One Cosmo product family.

The functional level of the OS is based on a Java™ based multi-application open platform, compliant
with Java Card 3.0.5 Classic Edition and Global Platform 2.3 specifications.

This ID-One COSMO V9.1 platform is able to receive and manage different types of applications; i.e.

Basic and Sensitive ones.

All the platform code including GP Java application called card manager are loaded in the FLASH

memory.

The TOE allows the loading of Java Card application and optional code:

 Applications can be loaded on the flash memory, at pre-personalisation, personalisation or use

phase.

 Optional code can also be loaded to upgrade the TOE at any time of product life cycle, this
function is named JPatch.

However, the Card Issuer can forbid each of these operations before or after the issuance of the card.

The mechanism for the different loading are part of the present ST and part of the TOE evaluation.

1.6.2 TOE usage

This Platform is an open and isolating platform that is compliant with the ANSSI Application Note 10
that deals with open and isolating platforms and ANSSI Application Note 06 for code loading.

Smart cards are used as data carriers that are secure against forgery and tampering as well as personal,

highly reliable, small size devices capable of replacing paper transactions by electronic data processing.
Data processing is performed by a piece of software embedded in the smart card chip, called an

application.
The Java Card System is intended to transform a smart card into a platform capable of executing

applications written in a subset of the Java programming language. The intended use of a Java Card

platform is to provide a framework for implementing IC independent applications conceived to safely
coexist and interact with other applications into a single smart card.

Applications installed on a Java Card platform can be selected for execution when the card
communicates with a card reader.

Notice that these applications may contain other confidentiality (or integrity) sensitive data than usual
cryptographic keys and PINs; for instance, passwords or pass-phrases are as confidential as the PIN, or

the balance of an electronic purse.
So far, the most typical applications are:

- Financial applications, like Credit/Debit ones, stored value purse, or electronic commerce,

among others.

- Transport and ticketing, granting pre-paid access to a transport system like the metro and bus
lines of a city.

- Personal identification, for granting access to secured sites or providing identification credentials

to participants of an event.

- Electronic passports and identity cards.

- Secure information storage, like health records, or health insurance cards.

- Loyalty programs, like the “Frequent Flyer” points awarded by airlines. Points are added and

deleted from the card memory in accordance with program rules. The total value of these points

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 13/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

may be quite high and they must be protected against improper alteration in the same way that

currency value is protected.

Futhermore, this platform embeds the MOC algorithm which is a highly secure technology for smart

cards applications. The MOC technology is an entire part of the product and enables the authentication

by way of digital prints. The MOC feature is out of the scope of the present ST.

1.7 Product Architecture

1.7.1 Logical scope of the TOE

From a logical point of view, the TOE is composed of hardware and software components, as listed
below and described in Figure 1.

Figure 1: Java Card Platform Architecture

The TOE, boundaries defined by dotted red line, includes the BIOS, the Virtual Machine, the APIs, the

Global Platform application (with the CM), the Resident application and the IC component. The TOE
integrates also a patch mechanism called Jpatch, implemented in the VM bloc.

Details of components are presented in the TOE description.

1.7.2 Physical scope of the TOE

From a physical point of view, The TOE is a smart card which uses the following pins as described in

Figure 2 below for communication.

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 14/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

Figure 2: View of the smart card and pins

The ID-One COSMO V9.1 on IFX is a dual Java Card platform based, compatible with multi-application
ID-One Cosmo product family.

The TOE is defined by:

 The underlying IC with its dedicated software,

 The OS based on a Java™ based multi-application platform, compliant with Java Card 3.0.5

Classic Edition and Global Platform 2.3 specifications.

 The ability to receive and manage different types of applications, Basic and Sensitive ones.

 All the platform code including GP Java application called card manager are loaded in the Flash
memory.

 The product is open at use phase.

 The basic or sensitive applications can be loaded on the flash memory, at prepersonalisation,

personalisation or use phase. These applications are out or the scope of the present evaluation.

The applets loaded pre issuance or post issuance are outside the TOE. Other smart card product
elements (such as holograms, magnetic stripes, security printing) are outside the scope of this Security

Target.

Java Card RMI is not implemented in the TOE.

IC

Power Mgmt

Clock
Mgmt

Sensors
& Filters

Reset Mgmt

RAM

MMU

DUAL CPU

SCP

Engine

Hybrid RNG

CRC

Timers

ISO 7816
(UART)

ISO 14443
(RF)

Vcc, GND

CLK

RST

I/O (Contact)

LA/LB (RF)

BIOS

Java Card API

Global Platform API

SSD ISD (Card Manager)

SOLID

FLASH
NVM

IDEMIA APIs

Crypto@2304

Loaded applications

 TOE BOUNDARIES

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 15/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

1.7.3 TOE Guidance

The ID-One COSMO V9.1 is evaluated with its guidance. Notice that this Public ST is also

considered as a guidance to all users of the TOE.

The guidance’s of the Platform are listed hereafter:

Audience Ref
Form factor

of delivery

Guidance of developer of sensitive applications [R31]

Electronic

version

Guidance for application developer
[R32]
[R35]

Guidance Platform Flash Generation [R36]

Guidance for developer of patches using JPatch and patch loading [R38]

Guidance for pre-personalisation [R33]

Issuer of the platform that aims to load applications [R34]

Secure acceptance [R37]

Table 1: Guidance references

[R31]

If the applet needs to have a security certification, the applet must follow recommendations listed in
the document.

If the applet is a basic application, and does not need security certification with the platform, the

certificate of the Platform is still valid if the applet go through the verifier before the loading of this
applet (the security function of the platform are still available).

This guide is provided to the developer and evaluator of a sensitive application to be certified.

[R32]

This document describes the ID-One COSMO V9.1 smart card usage. It describes how to use the card

from an APDU commands point of view and gets onto topics such as common platform APDU commands,
secure channels and security domains.

This document also describes the available Java Card and proprietary APIs for applet developers.
This guide is provided to the Developer of Java Card applications to be certified or not. It does not

mandate any requirement for the developer; it constitute a help.

[R33]

This document describes the pre-personalisation steps that should be followed to correctly initialize the

ID-One COSMO V9.1 platform. The TOE is finalized once it is pre-personalised.

[R34]

This document describes the loading procedure, in compliance with ANSSI Note 10 and the Java Card

Open Platform protection profile.
The [R34] is provided to the Loading Authority, who is in charge of loading an application.

[R35]

This document summarizes the ID proprietary API (packages, classes, methods and fields) available on

the Java Card Identity Platforms.

This guide is provided to the Developer of Java Card applications to be certified or not. It does not
mandate any requirement for the developer; it constitute a help.

[R36]

This document specifies the guidance to correctly load the platform using the IC loader.

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 16/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

[R37]

This document specifies the secure acceptance of the components that comprise the TOE.

[R38]

Guidance for developer of patches using JPatch and patch loading

The Guidance is aimed to be used by IDEMIA R&D. The patch has to be developed only by IDEMIA
R&D. Any patch has to be evaluated:

 by maintenance process if the patch does not impact the security

 or by reassement if the intended patch impact the security of any of evaluated security function

of the present scope.

1.7.4 Platform isolation

To ensure the platform isolation, the following verifications must be done:

1. For library packages intended to be loaded on the platform, the versioning rules described in

the Java Card Virtual Machine Specification at chapter “Binary Compatibility” and chapter
“Package Version“ must be applied in particular to determine the binary compatibility or

incompatibility of this package with a previous version. These rules are also summarized in

“GlobalPlatform Card Composition Model Security Guidelines for Basic Applications” at chapter
“Versioning”.

2. The byte code verification (required for any package intended to be loaded on the platform)

must be done using export files provided by IDEMIA.

Those verifications shall be done for all application intended to be loaded on the platform.

1.7.5 Applications

For sensitive application, the recommendations listed in [R31] are mandatory. The evaluator of the
sensitive application, checks that the guidance is followed by the sensitive application developer.

The integrity and optionally the confidentiality of the application shall be maintained after the Off card
verifier check or after the evaluation and the loading on the TOE.

This check shall be ensured by the organisational measures or by security mechanisms.
The platform is evaluated without applications.

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 17/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

1.8 TOE Description
The TOE is composed of software and hardware. The following chapters presents each part of the TOE.

1.8.1 Defensive Java Card Platform

The Java technology, embedded on the TOE, combines a subset of the Java programming language

with a runtime environment optimized for smart cards and similar small-memory embedded devices.

The Java CardTM platform is a smart card platform enabled with Java CardTM technology (also called, for

short, a “Java Card”). This technology allows multiple applications to run on a single card and provides
facilities for secure interoperability of applications. Applications running on the Java Card platform (“Java

Card applications”) are called applets.

The TOE is compliant with the version of the Java Card 3.0.5 classic edition, specified by three

documents related to Java Card API, Java Card Runtime Environment and Java Card Virtual Machine
Specifications, defined respectively in [R6], [R7] and [R8]. The next paragraph introduces those three

elements.

As the terminology is sometimes confusing, the term “Java Card System” has been introduced in that

defines the set constituted by the Java Card RE, the Java Card VM and the Java Card API.
The Java Card System provides an intermediate layer between the operating system of the card and

the applications. This layer allows applications written for one smart card platform enabled with Java
Card technology to run on any other such platform.

The Java Card VM is a bytecode interpreter embedded in the smart card. The Java Card RE is responsible

for card resource management, communication, applet execution, on-card system and applet security.

Applet isolation is achieved through the Java Card Firewall mechanism defined in [R7]. This mechanism

confines an applet to its own designated memory area. Thus, each applet is prevented from accessing
fields and operations related to objects owned by other applets, unless those applets provide a specific

interface (shareable interface) for that purpose. This access control policy is enforced at runtime by the

Java Card VM.
However, applet isolation cannot be entirely granted by the firewall mechanism if certain well-

formedness conditions are not satisfied by loaded applications.

Therefore, a bytecode verifier (BCV) formally verifies those conditions. The BCV is out of the scope of
the Java Card System defined in [R5].

The IDEMIA platform implements dynamic Verifier that allows the platform to be defensive.
Verifications are done during execution of the byte code.

And as this security target claims a demonstrable conformance to [R5]. The off card verifier is also
used. All applications are verified by the latest Oracle off card verifier.

The Java Card API (JCAPI) provides classes and interfaces for the core functionality of a Java Card
application. It defines the calling conventions by which an applet may access the JCRE and services

such as, among others, I/O management functions, PIN and cryptographic specific management and
the exceptions mechanism. The JCAPI is compatible with formal international standards, such as

ISO/IEC 7816 and industry specific standards.

1.8.2 Global Platform

The TOE is compliant with the Global Platform 2.3 (GP) standard [R13] which provides a set of APIs

and technologies to perform in a secure way, the operations involved in the management of the

applications hosted by the card. Using GP maximizes the compatibility and the opportunities of
communication as it becomes the current card management standard.

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 18/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

The main features addressed by GP are:

 The authentication of users through secure channels

 The downloading, installation removal, and selection for execution of Java Card applications

 The life cycle management of both the card and the applications

 The sharing of a global common PIN among all the applications installed on the card

These operations are addressed by a set of APIs used by the applications hosted on the card in order

to communicate with the external world on a standard basis.
The version considered in this document is version 2.3 of the GP Card specification. The following GP

functionalities, at least, are present within the TOE:
 Card content loading

 Extradition

 Asymmetric keys
 DAP support, Mandated DAP support

 DAP calculation with asymmetric cryptography
 Logical channels

 SCP02 support

 SCP03 support [R12]
 Support for contact and contactless cards different implicit selection on different interfaces and

channels
 Support for Supplementary Security Domains

 Trusted path privileges
 Post-issuance personalisation of Security Domain [R12]

 Application personalisation [R12]

 Crypto algorithms as detailed in 1.8.2.2 Cryptographic features

1.8.3 Integrated Circuit (IC)

The IC SLC32 is an IFX dual interface component that supports ISO/IEC 14443 Type A and type B. It

is a hardware device composed of a processing unit, memories, security components and I/O interfaces.
It has to implement security features able to ensure:

- The confidentiality and the integrity of information processed and flowing through the device,

- The resistance of the security IC to externals attacks such as physical tampering, environmental

stress or any other attacks that could compromise the sensitive assets stored or flowing through
it.

The IC configuration used in this project doesn’t include any optional software or optional toolbox. This

IC is certified by the German BSI certification body (BSI-DSZ-CC-1110-V2-2019). More information

regarding the components is available in the public security target of the chip [R26].

1.8.4 Operating System (OS)

The TOE relies on an Operating System (OS) which is an embedded piece of software loaded into the

Security IC. The Operating System manages the features and resources provided by the underneath
chip. It is, generally divided into two levels:

1) Low level:

a) Drivers related to the I/O, RAM, SOLID Flash, and any other hardware component present on

the Security IC
2) High level:

a) Protocols and handlers to manage I/O
b) Memory and file manager

c) Cryptographic services and any other high level services provided by the OS

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 19/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

1.8.4.1 BIOS

The BIOS is an interface between hardware and native components like VM and APIs. The BIOS
implements the following functionalities:

 APDU management, using T=0, T=1 and T=CL protocols (Type A and type B)

 Timer management

 Exceptions management

 Transaction management

 Flash memory access

1.8.4.2 Cryptographic features

The following crypto services are included in the OS:

Cryptographic Services Comments

RSA from 1024 to 2048-bits by step of 256-bits

References are standard ones

ECC with 160, 192, 256, 384, 512 and 521-bits key sizes

TDES with 56, 112 and 168-bits key sizes

AES with 128, 192, 256 key sizes

SHA-1, SHA 224, 256, 384 and 512 (for data integrity only does not
provide confidentiality)

RSA, ECC Key generation

CRC 16 and CRC 32 (for data integrity only does not provide
confidentiality)

RNG CTR_DRBG SP800-90

RSA signature/verification Based on supported RSA key sizes

ECDSA signature/verification
Based on supported ECC key sizes

ECDH

AES secure messaging

References are standard ones

TDES secure messaging

HMAC (64 bits up to 1016 bits)

1.8.4.3 Virtual Machine

The Virtual Machine, which is compliant with the Java Card 3.0.5 classic edition, interprets the byte code

of Java Card applets.
The Virtual Machine supports logical channels; this means that it allows an applet to be selected on a

channel, while a different applet is selected on another channel.
It also supports secure execution of applets loaded and stored in FLASH.

The Virtual Machine is activated upon the selection of an applet.

1.8.4.4 The Java Card Runtime Environment

The Java Card Runtime Environment (JCRE) contains the Java Card Virtual Machine (VM), the Java Card

Application Programming Interface (API) classes and industry-specific extensions, and support services.
For details please refer to reference [R7].

1.8.4.5 APIs

The APIs, compliant with the Java Card 3.0.5 classic edition, support key generation, Key Agreement,

signature, ciphering of messages and proprietary IDEMIA API.
Proprietary APIs [R35] have been developed like ISOSecureMessaging to assure the data are

exchanged in confidentiality and integrity; utilBER_Reader to read BER-TLV; SecureStore to store

integrity sensitive information, SAC (to perform the PACE access control) API for SAC computation that
are used to compute generic or integrated mapping.

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 20/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

1.8.4.6 Open and isolating Platform

This security target claims conformance to the Application Note 10 on Open and Isolating platform,
issued by ANSSI [R19]. An “open platform” can host new applications:

- Before its delivery to the end user (during phases 4, 5 or 6 of the traditional smartcard lifecycle).

Such loadings are called “pre-issuance”.

- After its delivery to the end user (phase 7). Such loadings are called “post-issuance”.

An “isolating platform” is a platform that maintains the separation of the execution domains of all

embedded applications on a platform, as of the platform itself. “Isolation” refers here to domain
separation of applications as well as protection of application’s data.

1.8.4.7 Resident Application

It provides a native code application, with a basic main dispatcher, to receive the card commands and

dispatch them to the application and module functions to implement the application commands.

It also deals with the Card Manufacturer authentication.
The dispatcher is always activated. Commands for administration are only available during

prepersonalisation phase.

1.8.4.8 Applets

Applets bytecodes shall go thru the latest Oracle and IDEMIA off card verifiers before the loading.
The platform evaluation shall identify, if any, recommendations in order to maintain isolation properties.

These recommendations then shall be followed by the applet developer and shall be checked before

loading.

1.8.4.9 JPatch

The platform allows to load patches at prepersonalisation, personalisation or use phase. The patches

installed cannot be bypassed. The TOE identification is updated to take into account the patches
installed.

The loading of any patch shall follow the procedure of impact analysis defined in [R4].
If the patch reconsiders the security of the TOE, a reassment of the TOE is mandatory, otherwise a

maintenance process is used.

1.9 Major Security Features of the TOE
The main goal of the TOE is to provide a sound and secure execution environment to critical assets that

need to be protected against unauthorized disclosure and/or modification.

The TOE with its security function has to protect itself and protect applets from bypassing, abuse or
tampering of its services that could compromise the security of all sensitive data. Even if the applets

are not in the scope of this evaluation.

Atomic Transactions

The TOE shall provide a transaction mechanism. It shall execute a sequence of modifications and
allocations on the persistent memory so that either all of them are completed, or the TOE behaves as

if none of them had been attempted.

The transaction mechanism shall permit to update internal TSF data as well as to perform different
functions of the TOE, like installing a new package on the card.

This mechanism shall be available for applet instances
The TOE shall perform the necessary actions to roll back to a safe state upon interruption.

Card Content Management
The TOE shall control the loading, installation, and deletion of packages and applet instances.

To remove the code of a package from the card, or to definitely deactivate an applet instance, so that
it becomes no longer selectable; it shall perform physical removal of those packages and applet data

stored in memories (except applet including in OS package in Flash memory that shall only be logically
removed).

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 21/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

Card Management Environment

This function shall initialize and manage the internal data structure of the Card Manager. During the
initialization phase of the card, it creates the Installer and the Applet Deletion Manager and initializes

their internal data structures. The internal data structure of the Card Manager includes the Package and
Applet Registries, which respectively contains the currently loaded packages and the currently installed

applet instances, together with their associated AIDs.
This function shall also be in charge of dispatching the APDU commands to the applet instances installed

on the card and keeping trace of the currently active ones.

It therefore handles sensitive TSF data of other security functions, like the Firewall.

Cardholder Verification
The TOE shall implement mechanisms to identify and authenticate the user of the product. This function

is available to applet instances.

Clearing of sensitive information

The TOE shall ensure that no residual information is available from memories, and shall protect sensitive
information that is no longer used. The Platform has to securely clear and destroy this information. It

concerns PINs, keys, sensitive data and buffer APDU.
This function is also available to applet.

DAP Verification
An Application Provider may require that its Application code to be loaded on the card shall be checked
for integrity and authenticity. The DAP Verification privilege of the Application Provider's Security
Domain shall provide this service on behalf of the Application Provider. A Controlling Authority may
require that all Application code to be loaded onto the card shall be checked for integrity and authenticity.
The Mandated DAP Verification privilege of the Controlling Authority's Security Domain shall provide
this service on behalf of the Controlling Authority.

Data coherency

As coherency of data should be maintained, and as power is provided by the CAD and might be stopped
at all moment (by tearing or attacks), a transaction mechanism need to be implemented.

When updating data, before writing the new ones, the old ones are saved in a specific memory area. If

a failure appears, at the next start-up, if old data are valid in the transaction area, the system restores
them for staying in a coherent state.

Data integrity

Sensitive data have to be protected from modifications: keys, pins, patch code and sensitive applet
data.

Encryption and Decryption
The TOE provides the applet instances with a mechanism for encrypting and decrypting the contents of

a byte array.
Ciphering operations are implemented to resist environmental stress and glitches and include measures

for preventing information leakage through covert channels.

Entity authentication/secure Channel

Off-card entity authentication is achieved through the process of initiating a Secure Channel and
provides assurance to the card that it is communicating with an authenticated off-card entity.

If any step in the off-card authentication process fails, the process shall be restarted (i.e. new session
keys generated).

The Secure Channel initiation and off-card entity authentication implies the creation of session keys

derived from card static key(s).

Exception
In case of abnormal event: data unavailable on an allocation or illegal access to a data, the system shall

own an internal mechanism allowing it to stop the code execution and raise an exception.

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 22/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

Firewall

The TOE with the Firewall shall control information flow at runtime. It shall ensure controls object
sharing between different applet instances, and between applet instances and the Java Card RE.

GP_Dispatcher

While a Security Domain or Card Manager is selected, the TOE shall test for every command if Security
Domain Owner authentication is required. If a secure channel is opened, the TOE tests according to the

Security Domain state and the Card state for every command if secure messaging is required.

Hardware operating

The TOE shall boot after the IC has successfully powered-up. The TOE boot operations shall ensure the
correct initialization of the TOE functionalities and the integrity of the code and data.

The TOE shall monitor IC detectors (e.g. out-of-range voltage, temperature, frequency, active shield,

memory aging) and shall provide automatic answers to potential security violations through interruption
routines that leave the device in a secure state.

Key Access

The TOE shall enforce secure access to all cryptographic keys on the card: RSA keys, DES keys, EC
keys, AES keys

Key Agreement
The TOE shall provide to applet instances a mechanism for supporting key agreement algorithms such

as EC Diffie-Hellman.

Key destruction

The TOE shall provide secure key destruction, such as keys cannot be retrieved from erased data.

Key Distribution
The TOE shall enforce the distribution of all the cryptographic keys of the card using a specific method.

Key Generation
The TOE shall enforce the creation and the on card generation of all the cryptographic keys of the card

using a specific method.

Key management
The TOE shall manage key set: Loading keys, adding a new key set (version and value of the key) or

updating a key set (update key value).

Manufacturer Authentication

During prepersonalisation phase, manufacturer authentication at the beginning of a communication
session shall be mandatory prior to any relevant data being transferred to the TOE.

Memory failure
This security functionality is in charge of the management of bad usage of the memory.

Message Digest

The TOE shall provide the applet instances with a mechanism for generating an (almost) unique value
for the contents of a byte array. This value can be used as a short representative of the information

contained in the whole byte array.

For Hashing algorithms that do not pad the messages, the TSF checks that the information is block
aligned before computing its hash value.

Pre-personalisation and Patching

This function shall permit to pre-initialize the internal data structures, to load the configuration of the

card and to load patch code (with JPatch) if needed in pre-personalization.

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 23/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

The TOE shall allow loading of TOE sensitive data: configuration data. Configuration data can contain

patches. The TOE shall check the integrity of the incoming data. Unless stated otherwise, the origin of

the incoming data shall be ensured by organisational means. The TOE shall ensure that TOE code and
patches installed after delivery cannot be bypassed. The TOE identification shall take into account the

patches installed after delivery.

JPatch at use phase
The loading functionality of patches is also available in use phase, once installed the TOE identification

shall take into account the patches installed after delivery.

Random Number

This TOE functionality provides the card manager, the resident application and the applets a mechanism
for generating challenges and key values.

The Number Generator is a combination of hardware and software RNG. The RNG is compliant with

[R14].

Resident Application dispatcher
During prepersonalisation phase, this function shall verify for every command if manufacturer

authentication is required.

Runtime Verifier

This security functionality ensures the secure processing of the stack, heap and transient by ensuring
additional controls.

Security functions of the IC

This TOE functionality ensures the correct execution of the IC functionalities.

Signature

This TSF shall provide the applet instances with a mechanism for generating an electronic signature of
the contents of a byte array and verifying an electronic signature contained in a byte array.

An electronic signature is made of a hash value of the information to be signed, encrypted with a secret

key. The verification of the electronic signature includes decrypting the hash value and checking that it
actually corresponds to the block of signed bytes. Signature operations shall be implemented to resist

environmental stress and glitches and include measures for preventing information leakage through
covert channels.

Unobservability

The TOE shall use and manipulate sensitive information without revealing any element of this

information.

CRC 16
The TOE provides this security function to guarantee the integrity of the sensitive objects (such as keys

or PINs) store in the card.

1.10 NON-TOE HW/SW/FW Available to the TOE
The only non-TOE component required on the product is the bytecode verifier. The bytecode verifier is

a program that performs static checks on the bytecodes of the methods of a CAP file.

Bytecode verification is a key component of security: applet isolation, for instance, depends on the file
satisfying the properties a verifier checks to hold. A method of a CAP file that has been verified shall

not contain, for instance, an instruction that allows forging a memory address or an instruction that
makes improper use of a return address as if it were an object reference. In other words, bytecodes

are verified to hold up to the intended use to which they are defined. Even if a dynamic verifier is
implemented in the product, this TOE considers also static bytecode verification; it has to be performed

on the host at off-card verification and prior to the loading of the file on the card in any case.

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 24/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

1.11 Life-Cycle
The following description (see Tables 2 and 3) introduces generics but fine-grained 3 options for the

life-cycle of secure smartcard products. These 3 options are compliant to standard smartcard life-cycle
as defined in [R5] and [R24]. Since applets loading is outside the TOE, this document focuses on the

Java Card platform (the TOE) life cycle which is part of the smart card product life cycle. The intent of

the more fine-grained options is to cover the specific aspects of new technologies like platform loading
in a comprehensive way and to add some flexibility with respect to the separation of responsibilities

between the various parties involved. The smartcard product life-cycle is decomposed in 7 phases that
describe the competent authorities for each of these phases.

Phase Phase name Actors Covered by

1 Security IC Embedded Software development

IDEMIA R&D
(Courbevoie and Pessac) ALC[PLT]

2 Security IC Development

Infineon ALC[IC]

3
Security IC Manufacturing
+ Platform Loading (in case of option a))

Infineon

ALC[IC]

4 Security IC Packaging

Infineon or another agent

-

5
Platform Loading
(in case of option b) using IC Package 2)

IDEMIA plant or another agent

AGD_PRE

6
Pre-personalisation & Personalisation
Optional code can also be loaded to upgrade
the TOE in this step

IDEMIA plant or another agent

AGD_PRE

7
Operational Usage
Optional code can also be loaded to upgrade
the TOE in this step

The end user

AGD_OPE

Table 2: TOE Life (options a and b)

Phase Phase name Actors Covered by

1 Security IC Embedded Software development
IDEMIA R&D

(Courbevoie and Pessac) ALC[PLT]

2 Security IC Development

Infineon ALC[IC]

3 Security IC Manufacturing
Infineon

ALC[IC]

4 Security IC Packaging

Infineon or another agent

-

5
Platform Loading
(in case of option c) using IC Package 1)

IDEMIA plant (Haarlem, Vitre, Ostrava,
Shenzen and Noida)

ALC[PLT]

6
Pre-personalisation & Personalisation
Optional code can also be loaded to upgrade
the TOE in this step

IDEMIA plant (Haarlem, Vitre, Ostrava,
Shenzen and Noida) or another agent

AGD_PRE

7
Operational Usage
Optional code can also be loaded to upgrade
the TOE in this step

The end user

AGD_OPE

 Table 3: TOE Life (option c)

Note:
ALC[PLT] refers to IDEMIA audited sites

ALC[IC] refers to the IFX audited sites

TOE Delivery

TOE Delivery

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 25/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

Notice that the IC loader shall be locked during the pre-personalisation and personalization phase; i.e.

before the end-user delivery.

1.11.1 Phase 1: Security IC Embedded Software development

The platform Development is performed during Phase 1. This includes Java Card System (JCS)

conception, design, implementation, testing and documentation. The development fulfilled requirements

of the final product, including conformance to Java Card Specifications, and recommendations of the
user guidance. The development is made in a controlled environment that avoids disclosure of source

code, data and any critical documentation and that guarantees the integrity of these elements. The
evaluation of the TOE includes the platform development environment.

The code and the associated data are sent

 To the IC manufacturer for loading on the IC, option a).

 To IDEMIA or third party sites, option b).

 To IDEMIA audited sites, option c).

1.11.2 Phase 2: Security IC Development

The Composite Product life cycle covers Security IC development which is described in the IC ST
identification (see [R26]).

1.11.3 Phase 3 and phase 4: Security IC Manufacturing and packaging

The Phase 3 of the Composite Product life cycle covers the IC production and when required for option
a) the loading of the platform code on the flash memory. This loading is done thanks to the IC security

functions.
For options a) and b), the TOE delivery is at the end of phase 3 at any form factor of the chip (on wafer,

modules, inlay, cards PVC/PETF or on die…).

1.11.4 Phase 5: Composite Product Integration

Where the IC is directly delivered without the OS, the loading takes place at this phase. Two options
are covered in this phase:

 Option b) At IDEMIA or third party sites (non audited sites), only package 2 of the

IC is available. The loading is done after mutual authentication, only authorised users
are able to load the Platform Code.

 Option c) At only IDEMIA audited sites, the loading is done thanks to package 1 of

the IC.

In case of option c, the TOE delivery is done at this step.

1.11.5 Phase 6: Composite Product Personalisation

See preparatives guidances.

1.11.6 Phase 7: Operational Usage

See operational guidances.

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 26/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

2 CONFORMANCE CLAIM

2.1 Common Criteria Conformance Claim
This security Target claims conformance to the Common Criteria specified in [R2] and [R3].

The Conformance to the Common Criteria is claimed as follows:

Common

Criteria
Conformance rationale

Part 2 [R2]
Conformance to the extended part.
FCS_RNG.1: “Random number generation”

Part 3 [R3]

Compliant to EAL5 +, augmented with
ALC_DVS.2: “Sufficiency of security measures”

(highest component)

AVA_VAN.5: “Advanced methodical vulnerability analysis”
(highest component)

Table 4: CC conformance rationale

2.2 Protection Profile Claim
This security target claims a demonstrable conformance to: [R5]

This security target is a composite security target, including the IC security target.

However, the security problem definition, the objectives, and the SFR of the IC are not described in this
document.

As the SCP is included in the TOE, the objectives for the operational environment OE.SCP.RECOVERY,
OE.SCP.SUPPORT and OE.SCP.IC are changed into the following TOE Objectives: O.SCP.RECOVERY,

O.SCP.SUPPORT and O.SCP.IC.
As the card manager becomes part of the TOE, the objective for the operational environment OE.CARD-

MANAGEMENT is moved into the TOE objective O.CARD_MANAGEMENT.

There are extra TOE objectives to provide additional services to applications. But such extension has no
impact on PP coverage.

There are extra Threats, OSP, Assumptions, TOE objectives and SFRs without conflict with [R5].
The RMI is not supported by the TOE, all related Threats, OSP, Assumptions, objectives and SFRs are

then removed.

Finally as no other modification was done, we can conclude that the conformance is demonstrated
The product is in conformance with the minimum assurance level EAL5+ augmented with ALC_DVS.2

and AVA_VAN.5 described in paragraph 3.2 of the Protection Profile by claiming an evaluation level
EAL5+ augmented with ALC_DVS.2 and AVA_VAN.5.

2.3 Conformance rationale
This paragraph presents the consistency between the security target and the Java Card System Open
configuration profile Protection Profile.

2.3.1 TOE SAR conformance

The protection profile require an assurance level of level EAL4 augmented with AVA_VAN.5 and
ALC_DVS.2. This security target considers an assurance level EAL5 augmented with AVA_VAN.5 and

ALC_DVS.2, which still complies with the requirements of the protection profiles.

2.3.2 TOE Type conformance

The TOE type is in conformance with the TOE type described in the protection profile.

All SPDs of the PP [5] are included in this TOE. Justification for the conformance is done in following
chapters.

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 27/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

2.3.3 SPD Statement Consistency

2.3.3.1 Assets

All assets from the protection profile are included in the security target. Other assets have been added
(see section 4.1.3).

2.3.3.2 Threats

All threats from the protection profile are included in the security target. Other threats have been added

(see section 4.3.9).

2.3.3.3 OSPs

All OSPs from the protection profile is included in the security target, no additional OSP have been
added.

2.3.3.4 Assumptions

All the assumptions from the protection profile have been added in the security target, except

A.DELETION.

A.DELETION has been removed from the security target because the deletion of applets is in the scope
of the evaluation, as O.CARD_MANAGEMENT is an objective in this security target. Other assumptions

have been added (see section 4.5.1).

2.3.3.5 Objectives

2.3.3.6 Security Objectives for the TOE

All the security objectives for the TOE from the protection profile are included in the security target.

Other security objectives for the TOE have been added (see section 5.1.6).

2.3.3.7 Security Objectives for the Operational Environment

All the security objectives for the operational environment from the protection profile are included in
the security target.

Some security objectives for the operational environment has been transformed in security objectives

for the TOE, the rationale is presented in section section 2.2. Other security objectives for the
operational environment have been added (see section 5.2.1).

2.3.3.8 Security Functional Requirements

All SFRs from the protection profile have been added in the security target. Other SFRs have been added

to cover supplemental features:
- § 7.1.5.2 for SFRs added for Card Manager,

- § 7.1.5.3 for SFRs added for Resident Application,
- § 7.1.5.4 for SFRs added for SmartCard Platform,

- § 7.1.5.5 for SFRs added for the applets,

- § 7.1.5.6 for SFRs added for Runtime Verification

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 28/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

3 Security aspects

This chapter describes the main security issues of the Java Card System and its environment addressed
in this Security Target, called “security aspects”, in a CC-independent way. In addition to this, they also

give a semi-formal framework to express the CC security environment and objectives of the TOE. They

can be instantiated as assumptions, threats, objectives (for the TOE and the environment) or
organizational security policies.

For instance, we will define hereafter the following aspect:
#.OPERATE (1) The TOE must ensure continued correct operation of its security functions. (2) The TOE

must also return to a well-defined valid state before a service request in case of failure during its

operation.
TSFs must be continuously active in one way or another; this is called “OPERATE”. The Security Target

may include an assumption, called “A.OPERATE”, stating that it is assumed that the TOE ensures
continued correct operation of its security functions, and so on. However, it may also include a threat,

called “T.OPERATE”, to be interpreted as the negation of the statement #.OPERATE. In this example,
this amounts to stating that an attacker may try to circumvent some specific TSF by temporarily shutting

it down. The use of “OPERATE” is intended to ease the understanding of this document.

This section presents security aspects that will be used in the remainder of this document. Some being
quite general, we give further details, which are numbered for easier cross-reference within the

document. For instance, the two parts of #.OPERATE, when instantiated with an objective
“O.OPERATE”, may be met by separate SFRs in the rationale. The numbering then adds further details

on the relationship between the objective and those SFRs.

3.1 Confidentiality
#.CONFID-APPLI-DATA:

Application data must be protected against unauthorized disclosure. This concerns logical attacks at
runtime in order to gain read access to other application’s data.

#.CONFID-JCS-CODE:

Java Card System code must be protected against unauthorized disclosure. Knowledge of the Java Card
System code may allow bypassing the TSF. This concerns logical attacks at runtime in order to gain a

read access to executable code, typically by executing an application that tries to read the memory area

where a piece of Java Card System code is stored.

#.CONFID-JCS-DATA:
Java Card System data must be protected against unauthorized disclosure. This concerns logical attacks

at runtime in order to gain a read access to Java Card System data. Java Card System data includes the

data managed by the Java Card RE, the Java Card VM and the internal data of Java Card platform API
classes as well.

3.2 Integrity
#.INTEG-APPLI-CODE:

Application code must be protected against unauthorized modification. This concerns logical attacks at

runtime in order to gain write access to the memory zone where executable code is stored. In post-
issuance application loading, this threat also concerns the modification of application code in transit to

the card.

#.INTEG-APPLI-DATA:
Application data must be protected against unauthorized modification. This concerns logical attacks at

runtime in order to gain unauthorized write access to application data. In post-issuance application

loading, this threat also concerns the modification of application data contained in a package in transit
to the card. For instance, a package contains the values to be used for initializing the static fields of the

package.

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 29/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

#.INTEG-JCS-CODE:

Java Card System code must be protected against unauthorized modification. This concerns logical

attacks at runtime in order to gain write access to executable code.

#.INTEG-JCS-DATA:
Java Card System data must be protected against unauthorized modification. This concerns logical

attacks at runtime in order to gain write access to Java Card System data. Java Card System data
includes the data managed by the Java Card RE, the Java Card VM and the internal data of Java Card

API classes as well.

3.3 Unauthorized executions

#.EXE-APPLI-CODE:
Application (byte) code must be protected against unauthorized execution. This concerns (1) invoking

a method outside the scope of the accessibility rules provided by the access modifiers of the Java

programming language ([JAVASPEC], §6.6); (2) jumping inside a method fragment or interpreting the
contents of a data memory area as if it was executable code;.

#.EXE-JCS-CODE:

Java Card System bytecode must be protected against unauthorized execution. Java Card System

bytecode includes any code of the Java Card RE or API. This concerns (1) invoking a method outside
the scope of the accessibility rules provided by the access modifiers of the Java programming

language([JAVASPEC], §6.6); (2) jumping inside a method fragment or interpreting the contents of a
data memory area as if it was executable code. Note that execute access to native code of the Java

Card System and applications is the concern of #.NATIVE.

#.FIREWALL:

The Firewall shall ensure controlled sharing of class instances, and isolation of their data and code
between packages (that is, controlled execution contexts) as well as between packages and the JCRE

context. An applet shall not read, write, compare a piece of data belonging to an applet that is not in
the same context, or execute one of the methods of an applet in another context without its

authorization.

#.NATIVE:

Because the execution of native code is outside of the JCS TSF scope, it must be secured so as to not
provide ways to bypass the TSFs of the JCS. Loading of native code, which is as well outside those TSFs,

is submitted to the same requirements. Should native software be privileged in this respect, exceptions
to the policies must include a rationale for the new security framework they introduce.

3.4 Bytecode verification

#.VERIFICATION

Bytecode must be verified prior to being executed. Bytecode verification includes (1) how well-formed
CAP file is and the verification of the typing constraints on the bytecode, (2) binary compatibility with

installed CAP files and the assurance that the export files used to check the CAP file correspond to those
that will be present on the card when loading occurs.

3.4.1 CAP file verification

Bytecode verification includes checking at least the following properties: (3) bytecode instructions

represent a legal set of instructions used on the Java Card platform; (4) adequacy of bytecode operands
to bytecode semantics; (5) absence of operand stack overflow/underflow; (6) control flow confinement

to the current method (that is, no control jumps to outside the method); (7) absence of illegal data
conversion and reference forging; (8) enforcement of the private/public access modifiers for class and

class members; (9) validity of any kind of reference used in the bytecodes (that is, any pointer to a

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 30/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

bytecode, class, method, object, local variable, etc actually points to the beginning of piece of data of

the expected kind); (10) enforcement of rules for binary compatibility (full details are given in [R8],

[R28], [R29]). The actual set of checks performed by the verifier is implementation-dependent, but shall
at least enforce all the “must clauses” imposed in [R8] on the bytecodes and the correctness of the CAP

files’ format.

As most of the actual Java Card VMs do not perform all the required checks at runtime, mainly because
smart cards lack memory and CPU resources, CAP file verification prior to execution is mandatory. On

the other hand, there is no requirement on the precise moment when the verification shall actually take

place, as far as it can be ensured that the verified file is not modified thereafter. Therefore, the
bytecodes can be verified either before the loading of the file on to the card or before the installation

of the file in the card or before the execution, depending on the card capabilities, in order to ensure
that each bytecode is valid at execution time. This Security Target assumes bytecode verification is

performed off-card.

Another important aspect to be considered about bytecode verification and application downloading is,

first, the assurance that every package required by the loaded applet is indeed on the card, in a binary-
compatible version (binary compatibility is explained in [R8] §4.4), second, that the export files used to

check and link the loaded applet have the corresponding correct counterpart on the card.

3.4.2 Integrity and authentication

Verification off-card is useless if the application package is modified afterwards. The usage of

cryptographic certifications coupled with the verifier in a secure module is a simple means to prevent
any attempt of modification between package verification and package installation.

Once a verification authority has verified the package, it signs it and sends it to the card. Prior to the

installation of the package, the card verifies the signature of the package, which authenticates the fact
that it has been successfully verified. In addition to this, a secured communication channel is used to

communicate into the card, ensuring that no modification has been performed on it.

Alternatively, the card itself may include a verifier and perform the checks prior to the effective

installation of the applet or provide means for the bytecodes to be verified dynamically. On-card
bytecode verifier is out of the scope of this Security Target.

3.4.3 Linking and authentication

Beyond functional issues, the installer ensures at least a property that matters for security: the loading
order shall guarantee that each newly loaded package references only packages that have been already

loaded on the card. The linker can ensure this property because the Java Card platform does not support
dynamic downloading of classes.

3.5 Card management

#.CARD_MANAGEMENT:

(1) The card manager (CM) shall control the access to card management functions such as the
installation, update or deletion of applets. (2) The card manager shall implement the card issuer’s policy

on the card.

#.INSTALL:

(1) The TOE must be able to return to a safe and consistent state when the installation of a package or
an applet fails or be cancelled (whatever the reasons). (2) Installing an applet must have no effect on

the code and data of already installed applets. The installation procedure should not be used to bypass
the TSFs. In short, it is an atomic operation, free of harmful effects on the state of the other applets.

(3) The procedure of loading and installing a package shall ensure its integrity and authenticity.

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 31/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

#.SID:

(1) Users and subjects of the TOE must be identified. (2) The identity of sensitive users and subjects

associated with administrative and privileged roles must be particularly protected; this concerns the
Java Card RE, the applets registered on the card, and especially the default applet and the currently

selected applet (and all other active applets in Java Card System 2.2.x). A change of identity, especially
standing for an administrative role (like an applet impersonating the Java Card RE), is a severe violation

of the Security Functional Requirements (SFR). Selection controls the access to any data exchange
between the TOE and the CAD and therefore, must be protected as well. The loading of a package or

any exchange of data through the APDU buffer (which can be accessed by any applet) can lead to

disclosure of keys, application code or data, and so on.

#.OBJ-DELETION:
(1) Deallocation of objects should not introduce security holes in the form of references pointing to

memory zones that are not longer in use, or have been reused for other purposes. Deletion of collection

of objects should not be maliciously used to circumvent the TSFs. (2) Erasure, if deemed successful,
shall ensure that the deleted class instance is no longer accessible.

#.DELETION:

(1) Deletion of installed applets (or packages) should not introduce security holes in the form of broken
references to garbage collected code or data, nor should they alter integrity or confidentiality of

remaining applets. The deletion procedure should not be maliciously used to bypass the TSFs. (2)

Erasure, if deemed successful, shall ensure that any data owned by the deleted applet is no longer
accessible (shared objects shall either prevent deletion or be made inaccessible). A deleted applet

cannot be selected or receive APDU commands. Package deletion shall make the code of the package
no longer available for execution. (3) Power failure or other failures during the process shall be taken

into account in the implementation so as to preserve the SFRs. This does not mandate, however, the

process to be atomic. For instance, an interrupted deletion may result in the loss of user data, as long
as it does not violate the SFRs.

The deletion procedure and its characteristics (whether deletion is either physical or logical, what
happens if the deleted application was the default applet, the order to be observed on the deletion

steps) are implementation-dependent. The only commitment is that deletion shall not jeopardize the

TOE (or its assets) in case of failure (such as power shortage).
Deletion of a single applet instance and deletion of a whole package are functionally different operations

and may obey different security rules. For instance, specific packages can be declared to be undeletable
(for instance, the Java Card API packages), or the dependency between installed packages may forbid

the deletion (like a package using super classes or super interfaces declared in another package).

3.6 Services

#.ALARM:

The TOE shall provide appropriate feedback upon detection of a potential security violation. This
particularly concerns the type errors detected by the bytecode verifier, the security exceptions thrown

by the Java Card VM, or any other security-related event occurring during the execution of a TSF.

#.OPERATE:

(1) The TOE must ensure continued correct operation of its security functions. (2) In case of failure
during its operation, the TOE must also return to a well-defined valid state before the next service

request.

#.RESOURCES:
The TOE controls the availability of resources for the applications in order to prevent unauthorized denial

of service or malfunction of the TSFs. This concerns both execution (dynamic memory allocation) and

installation (static memory allocation) of applications and packages.

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 32/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

#.CIPHER:

The TOE shall provide a means to the applications for ciphering sensitive data, for instance, through a

programming interface to low-level, highly secure cryptographic services. In particular, those services
must support cryptographic algorithms consistent with cryptographic usage policies and standards.

#.KEY-MNGT:

The TOE shall provide a means to securely manage cryptographic keys. This includes: (1) Keys shall be
generated in accordance with specified cryptographic key generation algorithms and specified

cryptographic key sizes, (2) Keys must be distributed in accordance with specified cryptographic key

distribution methods, (3) Keys must be initialized before being used, (4) Keys shall be destroyed in
accordance with specified cryptographic key destruction methods.

#.PIN-MNGT:

The TOE shall provide a means to securely manage PIN objects. This includes: (1) Atomic update of

PIN value and try counter, (2) No rollback on the PIN-checking function, (3) Keeping the PIN value
(once initialized) secret (for instance, no clear-PIN-reading function), (4) Protection of PIN’s security

attributes (state, try counter, try limit…) integrity.

#.SCP:
The smart card platform must be secure with respect to the SFRs. Then: (1) After a power loss, RF

signal loss or sudden card removal prior to completion of some communication protocol, the SCP will

allow the TOE on the next power up to either complete the interrupted operation or revert to a secure
state. (2) It does not allow the SFRs to be bypassed or altered and does not allow access to other low-

level functions than those made available by the packages of the Java Card API. That includes the
protection of its private data and code (against disclosure or modification) from the Java Card System.

(3) It provides secure low-level cryptographic processing to the Java Card System. (4) It supports the

needs for any update to a single persistent object or class field to be atomic, and possibly a low-level
transaction mechanism. (5) It allows the Java Card System to store data in “persistent technology

memory” or in volatile memory, depending on its needs (for instance, transient objects must not be
stored in non-volatile memory). The memory model is structured and allows for low–level control

accesses (segmentation fault detection). (6) It safely transmits low–level exceptions to the TOE

(arithmetic exceptions, checksum errors), when applicable. Finally, it is required that (7) the IC is
designed in accordance with a well-defined set of policies and standards (for instance, those specified

in [R24]), and will be tamper resistant to actually prevent an attacker from extracting or altering security
data (like cryptographic keys) by using commonly employed techniques (physical probing and

sophisticated analysis of the chip). This especially matters to the management (storage and operation)
of cryptographic keys.

#.TRANSACTION:
The TOE must provide a means to execute a set of operations atomically. This mechanism must not

jeopardise the execution of the user applications. The transaction status at the beginning of an applet
session must be closed (no pending updates).

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 33/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

4 Security Problem Definition

4.1 Assets

Assets are security-relevant elements to be directly protected by the TOE. Confidentiality of
assets is always intended with respect to un-trusted people or software, as various parties are
involved during the first stages of the smart card product life-cycle; details are given in threats
hereafter.

Assets may overlap, in the sense that distinct assets may refer (partially or wholly) to the same
piece of information or data. For example, a piece of software may be either a piece of source
code (one asset) or a piece of compiled code (another asset), and may exist in various formats
at different stages of its development (digital supports, printed paper). This separation is
motivated by the fact that a threat may concern one form at one stage, but be meaningless
for another form at another stage.

The assets to be protected by the TOE are listed below. They are grouped according to whether
it is data created by and for the user (User data) or data created by and for the TOE (TSF
data). For each asset it is specified the kind of dangers that weigh on it.

4.1.1 User data

D.APP_CODE

The code of the applets and libraries loaded on the card.

To be protected from unauthorized modification.

D.APP_C_DATA

Confidentiality - sensitive data of the applications, like the data contained in an object, a
static field of a package, a local variable of the currently executed method, or a position of
the operand stack.

To be protected from unauthorized disclosure.

D.APP_I_DATA

Integrity sensitive data of the applications, like the data contained in an object, and the PIN
security attributes (PIN Try limit, PIN Try counter and State).

To be protected from unauthorized modification.

D.APP_KEYs

Cryptographic keys owned by the applets.

To be protected from unauthorized disclosure and modification.

D.PIN

Any end-user's PIN.

To be protected from unauthorized disclosure and modification.

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 34/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

4.1.2 TSF data

D.API_DATA

Private data of the API, like the contents of its private fields.

To be protected from unauthorized disclosure and modification.

D.CRYPTO

Cryptographic data used in runtime cryptographic computations, like a seed used to
generate a key.

To be protected from unauthorized disclosure and modification.

D.JCS_CODE

The code of the Java Card System.

To be protected from unauthorized disclosure and modification.

D.JCS_DATA

The internal runtime data areas necessary for the execution of the Java Card VM, such as,
for instance, the frame stack, the program counter, the class of an object, the length
allocated for an array, any pointer used to chain data-structures.

To be protected from unauthorized disclosure or modification.

D.SEC_DATA

The runtime security data of the Java Card RE, like, for instance, the AIDs used to identify
the installed applets, the currently selected applet, the current context of execution and the
owner of each object.

To be protected from unauthorized disclosure and modification.

4.1.3 Additional assets

D.CONFIG

The configuration DATA are put at prepersonalisation phase: locks, keys, patch if any. These
elements of configuration have to be loaded securely. To be protected from unauthorized
disclosure or modification.

D.SENSITIVE_DATA

The other sensitive data are grouped in the same D.Sensitive_Data. The list is presented
below:

o D.NB_AUTHENTIC: Number of authentications. This number is specified in the SFR

o D.NB_REMAINTRYOWN: Number of remaining tries for owner PIN. This number is
specified in the SFR

o D.NB_REMAINTRYGLB: Number of remaining tries for a global PIN. This number is
specified in the SFR

o ASG.CARDREG: Card registry (AS.APID: Applet Identifier (AID), AS.CMID: Card
Manager ID (AID))

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 35/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

o ASG.APPRIV: Applet privileges group (Card Manager lock privilege, Card terminate
privilege, Default selected privilege, PIN change privilege, Security Domain
privilege, Security Domain with DAP verification privilege, Security Domain with
Mandated DAP verification privilege)

o AS.AUTH_MSK_STATUS: Authentication MSK Status, this Security Attribute verifies
if the authentication with the MSK key is performed successfully or not.

o AS. MSK_KEY_VALUE: Value of the MSK key.

o AS. MSK_KEY_COUNTER: Counter of remaining tries for the MSK key.

o AS. JSK_ KEY_VALUE: Value of the JSK key.

o AS. JSK_ KEY_COUNTER: Counter of remaining tries for the JSK key.

o AS.CMLIFECYC: This Security Attribute represents the Card life cycle state. It can
be either: Prepersonalisation, Personalisation and use phases of the card.

D.ARRAY

Applets are enabled to store confidential data. To be protected from unauthorized disclosure
and modification.

D.JCS_KEYS

AS.KEYSET_VERSION and AS.KEYSET_Value Cryptographic keys used when loading a file
into the card. To be protected from unauthorized disclosure and modification.

4.2 Users / Subjects

4.2.1 Additional Users / Subjects

S.RESIDENT_APPLICATION

The resident application

R.personaliser

Card Issuer or card Manufacturer

R.Prepersonaliser

Card manufacturer

R.Card_Manager

Card Manager

R.Security_Domain

Application Provider and its associated Security Domain

R.Use_API

User of applet for identification

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 36/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

R.Applet_privilege

Applet administrator

4.2.2 Miscellaneous

U.Card_Issuer

The Card Issuer is the entity that own the card and is ultimately responsible for the
behaviour of the card. It is initially the only entity authorized to manage applications
through a secure communication channel with the card.

U.Card_Manufacturer

The Card Manufacturer is the entity responsible for producing smart cards on behalf of the
Card Issuer.

S.ADEL

The applet deletion manager which also acts on behalf of the card issuer. It may be an
applet ([R7], §11), but its role asks anyway for a specific treatment from the security
viewpoint. This subject is unique and is involved in the ADEL security policy defined in
ADELG Security Functional Requirements.

S.APPLET

Any applet instance.

S.BCV

The bytecode verifier (BCV), which acts on behalf of the verification authority who is in
charge of the bytecode verification of the packages. This subject is involved in the PACKAGE
LOADING security policy

S.CAD

The CAD represents the actor that requests, by issuing commands to the card. It also plays
the role of the off-card entity that communicates with the S.INSTALLER.

S.INSTALLER

The installer is the on-card entity which acts on behalf of the card issuer. This subject is
involved in the loading of packages and installation of applets.

S.JCRE

The runtime environment under which Java programs in a smart card are executed.

S.JCVM

The bytecode interpreter that enforces the firewall at runtime.

S.LOCAL

Operands stack of a JCVM frame, or local variable of a JCVM frame containing an object or
an array of references.

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 37/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

S.MEMBER

Any object's field, static field or array position.

S.PACKAGE

A package is a namespace within the Java programming language that may contain classes
and interfaces, and in the context of Java Card technology, it defines either a user library,
or one or several applets.

S.TOE

Source code.

4.3 Threats

This section introduces the threats to the assets against which specific protection within the
TOE or its environment is required. Several groups of threats are distinguished according to
the configuration chosen for the TOE and the means used in the attack. The classification is
also inspired by the components of the TOE that are supposed to counter each threat.

4.3.1 CONFIDENTIALITY

T.CONFID-APPLI-DATA

The attacker executes an application to disclose data belonging to another application. See
#.CONFID-APPLI-DATA for details.

Directly threatened asset(s): D.APP_C_DATA, D.PIN and D.APP_KEYs.

T.CONFID-JCS-CODE

The attacker executes an application to disclose the Java Card System code. See #.CONFID-
JCS-CODE for details.

Directly threatened asset(s): D.JCS_CODE.

T.CONFID-JCS-DATA

The attacker executes an application to disclose data belonging to the Java Card System.
See #.CONFID-JCS-DATA for details.

Directly threatened asset(s): D.API_DATA, D.SEC_DATA, D.JCS_DATA, D.CRYPTO and
D.JCS_KEYS.

4.3.2 INTEGRITY

T.INTEG-APPLI-CODE

The attacker executes an application to alter (part of) its own code or another application's
code. See #.INTEG-APPLI-CODE for details.

Directly threatened asset(s): D.APP_CODE.

T.INTEG-APPLI-CODE.LOAD

The attacker modifies (part of) its own or another application code when an application
package is transmitted to the card for installation. See #.INTEG-APPLI-CODE for details.

Directly threatened asset(s): D.APP_CODE.

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 38/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

T.INTEG-APPLI-DATA

The attacker executes an application to alter (part of) another application's data. See
#.INTEG-APPLI-DATA for details.

Directly threatened asset(s): D.APP_I_DATA, D.PIN, and D.APP_KEYs.

T.INTEG-APPLI-DATA.LOAD

The attacker modifies (part of) the initialization data contained in an application package
when the package is transmitted to the card for installation. See #.INTEG-APPLI-DATA for
details.

Directly threatened asset(s): D.APP_I_DATA and D_APP_KEY.

T.INTEG-JCS-CODE

The attacker executes an application to alter (part of) the Java Card System code. See
#.INTEG-JCS-CODE for details.

Directly threatened asset(s): D.JCS_CODE.

T.INTEG-JCS-DATA

The attacker executes an application to alter (part of) Java Card System or API data. See
#.INTEG-JCS-DATA for details.

Directly threatened asset(s): D.API_DATA, D.SEC_DATA, D.JCS_DATA, D.JCS_KEYS and
D.CRYPTO.

Other attacks are in general related to one of the above, and aimed at disclosing or modifying
on-card information. Nevertheless, they vary greatly on the employed means and threatened
assets, and are thus covered by quite different objectives in the sequel. That is why a more
detailed list is given hereafter.

4.3.3 IDENTITY USURPATION

T.SID.1

An applet impersonates another application, or even the Java Card RE, in order to gain
illegal access to some resources of the card or with respect to the end user or the terminal.
See #.SID for details.

Directly threatened asset(s): D.SEC_DATA (other assets may be jeopardized should this
attack succeed, for instance, if the identity of the JCRE is usurped), D.PIN, D.JCS_KEYS and
D.APP_KEYs and D.SENSITIVE_DATA.

T.SID.2

The attacker modifies the TOE's attribution of a privileged role (e.g. default applet and
currently selected applet), which allows illegal impersonation of this role. See #.SID for
further details.

Directly threatened asset(s): D.SEC_DATA (any other asset may be jeopardized should this
attack succeed, depending on whose identity was forged) and D.SENSITIVE_DATA.

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 39/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

4.3.4 UNAUTHORIZED EXECUTION

T.EXE-CODE.1

An applet performs an unauthorized execution of a method. See #.EXE-JCS-CODE and
#.EXE-APPLI-CODE for details.

Directly threatened asset(s): D.APP_CODE.

T.EXE-CODE.2

An applet performs an execution of a method fragment or arbitrary data. See #.EXE-JCS-
CODE and #.EXE-APPLI-CODE for details.

Directly threatened asset(s): D.APP_CODE.

T.NATIVE

An applet executes a native method to bypass a TOE Security Function such as the firewall.
See #.NATIVE for details.

Directly threatened asset(s): D.JCS_DATA.

4.3.5 DENIAL OF SERVICE

T.RESOURCES

An attacker prevents correct operation of the Java Card System through consumption of
some resources of the card: RAM or NVRAM. See #.RESOURCES for details.

Directly threatened asset(s): D.JCS_DATA.

4.3.6 CARD MANAGEMENT

T.DELETION

The attacker deletes an applet or a package already in use on the card, or uses the deletion
functions to pave the way for further attacks (putting the TOE in an insecure state). See
#.DELETION for details.

Directly threatened asset(s): D.SEC_DATA, D.APP_CODE and D.SENSITIVE_DATA.

T.INSTALL

The attacker fraudulently installs post-issuance of an applet on the card. This concerns
either the installation of an unverified applet or an attempt to induce a malfunction in the
TOE through the installation process. See #.INSTALL for details.

Directly threatened asset(s): D.SEC_DATA (any other asset may be jeopardized should this
attack succeed, depending on the virulence of the installed application) and
D.SENSITIVE_DATA.

4.3.7 SERVICES

T.OBJ-DELETION

The attacker keeps a reference to a garbage collected object in order to force the TOE to
execute an unavailable method, to make it to crash, or to gain access to a memory
containing data that is now being used by another application. See #.OBJ-DELETION for
further details.

Directly threatened asset(s): D.APP_C_DATA, D.APP_I_DATA and D.APP_KEYs.

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 40/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

4.3.8 MISCELLANEOUS

T.PHYSICAL

The attacker discloses or modifies the design of the TOE, its sensitive data or application
code by physical (opposed to logical) tampering means. This threat includes IC failure
analysis, electrical probing, unexpected tearing, and DPA. That also includes the
modification of the runtime execution of Java Card System or SCP software through
alteration of the intended execution order of (set of) instructions through physical
tampering techniques.

This threatens all the identified assets in the present evaluation (restricted to physical
attacks).

This threat refers to the point (7) of the security aspect #.SCP, and all aspects related to
confidentiality and integrity of code and data.

4.3.9 Additional threats

T.CONFIGURATION

The attacker tries to observe or modify configuration information exchanged between the
TOE and its environnment. The TOE in this phase (prepersonalisation) must protect itself
from modification or theft. Even the field is protected by assurance measures, each
operations realised in this phase has to be protected.

Directly threatened asset(s): D.CONFIG

T.CONF_DATA_APPLET

The attacker tries to observe the operation of comparison between two byte arrays in order
to catch confidential information manipulated.

Directly threatened asset(s): D.ARRAY

T.PATCH_LOADING

The attacker tries to avoid the loading of a genuine patch by:

o altering a patch (during loading or once loaded),

o exploiting the patch loading mechanism to load unauthenticated code on the TOE

in order to get access to the assets, the TSF data or the TOE user data, or to modify the
TSF.

Directly threatened asset(s): D.CONFIG

4.4 Organisational Security Policies

This section describes the organizational security policies to be enforced with respect to the
TOE environment.

OSP.VERIFICATION

This policy shall ensure the consistency between the export files used in the verification and
those used for installing the verified file. The policy must also ensure that no modification
of the file is performed in between its verification and the signing by the verification
authority. See #.VERIFICATION for details. OE.VERIFICATION guarantees the correct
integrity and authenticity evidences for each application, by means of elements provided
by OE.CODE-EVIDENCE.

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 41/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

4.5 Assumptions

This section introduces the assumptions made on the environment of the TOE.

Due to the Protection Profile and Security Target definition, T.DELETION replaces A.DELETION
as O.CARD_MANAGEMENT replaces OE.CARD_MANAGEMENT.

A.APPLET

Applets loaded post-issuance do not contain native methods. The Java Card specification
explicitly "does not include support for native methods" ([R8], §3.3) outside the API.

A.VERIFICATION

All the bytecodes are verified at least once, before the loading, before the installation or
before the execution, depending on the card capabilities, in order to ensure that each
bytecode is valid at execution time.

Application Note: The verifications concerns the java Card application.

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 42/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

5 Security Objectives

5.1 Security Objectives for the TOE

This section defines the security objectives to be achieved by the TOE.

SFRs related to RMI functionality are excluded, as they are not part of this security target.

5.1.1 IDENTIFICATION

O.SID

The TOE shall uniquely identify every subject (applet, or package) before granting it access
to any service.

5.1.2 EXECUTION

O.FIREWALL

The TOE shall ensure controlled sharing of data containers owned by applets of different
packages or the JCRE and between applets and the TSFs. See #.FIREWALL for details.

O.GLOBAL_ARRAYS_CONFID

The TOE shall ensure that the APDU buffer that is shared by all applications is always
cleared upon applet selection. The TOE shall ensure that the global byte array used for the
invocation of the install method of the selected applet is always cleared after the return
from the install method.

O.GLOBAL_ARRAYS_INTEG

The TOE shall ensure that no application can store a reference to the APDU buffer, a global
byte array created by the user through makeGlobalArray method and the byte array used
for invocation of the install method of the selected applet.

O.NATIVE

The only means that the Java Card VM shall provide for an application to execute native
code is the invocation of a method of the Java Card API, or any additional API. See
#.NATIVE for details.

O.OPERATE

The TOE must ensure continued correct operation of its security functions. See #.OPERATE
for details.

O.REALLOCATION

The TOE shall ensure that the re-allocation of a memory block for the runtime areas of the
Java Card VM does not disclose any information that was previously stored in that block.

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 43/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

O.RESOURCES

The TOE shall control the availability of resources for the applications. See #.RESOURCES
for details.

5.1.3 SERVICES

O.ALARM

The TOE shall provide appropriate feedback information upon detection of a potential
security violation. See #.ALARM for details.

O.CIPHER

The TOE shall provide a means to cipher sensitive data for applications in a secure way. In
particular, the TOE must support cryptographic algorithms consistent with cryptographic
usage policies and standards. See #.CIPHER for details.

O.RNG

The TOE shall ensure the cryptographic quality of random number generation. For instance
random numbers shall not be predictable and shall have sufficient entropy. The TOE shall
ensure that no information about the produced random numbers is available to an attacker
since they might be used for instance to generate cryptographic keys.

O.KEY-MNGT

The TOE shall provide a means to securely manage cryptographic keys (D.APP_KEYs,
D.JCS_KEYS and D.CRYPTO). This concerns the correct generation, distribution, access and
destruction of cryptographic keys. See #.KEY-MNGT.

O.PIN-MNGT

The TOE shall provide a means to securely manage PIN objects (including the PIN try limit,
PIN try counter and states). If the PIN try limit is reached, no further PIN authentication
must be allowed. See #.PIN-MNGT for details. This concerns at least the correct
authentication of the cardholder and the PIN before having access to protected operations;
the observability of the comparison between presented PIN and stored PIN.

Application Note:

PIN objects may play key roles in the security architecture of client applications. The way
they are stored and managed in the memory of the smart card must be carefully considered,
and this applies to the whole object rather than the sole value of the PIN. For instance, the
try limit and try counter's value are as sensitive as that of the PIN and the TOE must restrict
their modification only to authorized applications such as the card manager.

O.TRANSACTION

The TOE must provide a means to execute a set of operations atomically. See
#.TRANSACTION for details.

O.KEY-MNGT, O.PIN-MNGT, O.TRANSACTION, O.RNG and O.CIPHER are actually provided to
applets in the form of Java Card APIs. Vendor-specific libraries can also be present on the card
and made available to applets; those may be built on top of the Java Card API or
independently. These proprietary libraries will be evaluated together with the TOE.

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 44/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

5.1.4 OBJECT DELETION

O.OBJ-DELETION

The TOE shall ensure the object deletion shall not break references to objects. See #.OBJ-
DELETION for further details.

5.1.5 APPLET MANAGEMENT

O.DELETION

The TOE shall ensure that both applet and package deletion perform as expected. See
#.DELETION for details.

O.LOAD

The TOE shall ensure that the loading of a package into the card is safe. Besides, for code
loaded post-issuance, the TOE shall verify the integrity and authenticity evidences
generated during the verification of the application package by the verification authority.
This verification by the TOE shall occur during the loading or later during the install process.

Application Note:

Usurpation of identity resulting from a malicious installation of an applet on the card may
also be the result of perturbing the communication channel linking the CAD and the card.
Even if the CAD is placed in a secure environment, the attacker may try to capture,
duplicate, permute or modify the packages sent to the card. He may also try to send one
of its own applications as if it came from the card issuer. Thus, this objective is intended to
ensure the integrity and authenticity of loaded CAP files.

O.INSTALL

The TOE shall ensure that the installation of an applet performs as expected (See
#.INSTALL for details).

5.1.6 Additional security objectives for the TOE

Four security objectives for the operational environment defined in the PP JCS have been
transformed in security objectives for the TOE:

 OE.SCP.IC

 OE.SCP.SUPPORT

 OE.SCP.RECOVERY

 OE.CARD_MANAGEMENT

O.SCP.SUPPORT

The TOE shall support the following functionalities:

o It does not allow the TSFs to be bypassed or altered and does not allow access to
other low-level functions than those made available by the packages of the API.
That includes the protection of its private data and code (against disclosure or
modification) from the Java Card System.

o It provides secure low-level cryptographic processing to the Java Card System and
Global Platform.

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 45/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

o It supports the needs for any update to a single persistent object or class field to
be atomic, and a low-level transaction mechanism.

o It allows the Java Card System to store data in "persistent technology memory" or
in volatile memory, depending on its needs (for instance, transient objects must
not be stored in non-volatile memory). The memory model is structured and allows
for low-level control accesses (segmentation fault detection).

O.SCP.IC

The SCP shall possess IC security features. It shall provide all IC security features against
physical attacks. It is required that the IC is designed in accordance with a well-defined set
of policies and standards (likely specified in another protection profile), and will be tamper
resistant to actually prevent an attacker from extracting or altering security data (like
cryptographic keys) by using commonly employed techniques (physical probing and
sophisticated analysis of the chip). This especially matters to the management (storage and
operation) of cryptographic keys.

O.SCP.RECOVERY

If there is a loss of power, or if the smart card is withdrawn from the CAD while an operation
is in progress, the SCP must allow the TOE to eventually complete the interrupted operation
successfully, or recover to a consistent and secure state. The smart card platform must be
secure with respect to the SFRs. Then after a power loss or sudden card removal prior to
completion of some communication protocol, the SCP will allow the TOE on the next power
up to either complete the interrupted operation or revert to a secure state.

O.RESIDENT_APPLICATION

The objective ensures the access control to the configuration operations during pre-
personalization phase:

In pre-personalization the RA shall control the access of Personalizer for product
configuration: the loading of sensitive data (Patches and ISK keys encrypted with the
appropriate key), and keys destructions (MSK and LSK keys) once ISK loaded.

O.CARD_MANAGEMENT

The card manager shall control the access to card management functions such as the
installation, update or deletion of applets. It shall also implement the card issuer's policy on
the card.

The card manager is an application with specific rights, which is responsible for the
administration of the smart card. This component will in practice be tightly connected with
the TOE, which in turn shall very likely rely on the card manager for the effective enforcing
of some of its security functions. Typically the card manager shall be in charge of the life
cycle of the whole card, as well as that of the installed applications (applets). The card
manager should prevent that card content management (loading, installation, deletion) is
carried out, for instance, at invalid states of the card or by non-authorized actors. It shall
also enforce security policies established by the card issuer.

O.SECURE_COMPARE

The TOE shall provide to applet a means to securely compare two byte arrays, i.e.
countermeasures against the following attacks: timing attack, comparison loop interrupted
and result corrupted.

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 46/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

This objective ensure that no residual information is available from this operation to
attackers. The operation of the comparison maintain the confidentiality of the compared
arrays.

O.PATCH_LOADING

The TOE shall provide a secure patch code loading mechanism. The data to be loaded are
encrypted. Once these data loaded, the integrity of the modified code is updated and
compared to the provided one in the patch package.

5.2 Security Objectives for the Operational Environment

This section introduces the security objectives to be achieved by the environment. Four
security objectives for the operational environment from the PP JCS have been transformed in
security objectives for the TOE:

 OE.SCP.SUPPORT

 OE.SCP.IC

 OE.SCP.RECOVERY

 OE.CARD_MANAGEMENT

OE.APPLET

No applet loaded post-issuance shall contain native methods.

OE.VERIFICATION

All the bytecodes shall be verified at least once, before the loading, before the installation
or before the execution, depending on the card capabilities, in order to ensure that each
bytecode is valid at execution time. See #.VERIFICATION for details. Additionally, the applet
shall follow all the recommendations, if any, mandated in the platform guidance for
maintaining the isolation property of the platform.

Application Note:

Constraints to maintain the isolation property of the platform are provided by the platform
developer in application development guidance. The constraints apply to all application code
loaded in the platform.

OE.CODE-EVIDENCE

For Java Card application code loaded pre-issuance, evaluated technical measures
implemented by the TOE or audited organizational measures must ensure that loaded
application has not been changed since the code verifications required in
OE.VERIFICATION. For application code loaded post-issuance and verified off-card
according to the requirements of OE.VERIFICATION, the verification authority shall provide
digital evidence to the TOE that the application code has not been modified after the code
verification and that he is the actor who performed code verification. For application code
loaded post-issuance and partially or entirely verified on-card, technical measures must
ensure that the verification required in OE.VERIFICATION are performed. On-card bytecode
verifier is out of the scope of this Security Target.

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 47/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

Application Note:

For Java Card application code loaded post-issuance and verified off-card, the integrity and
authenticity evidence can be achieved by electronic signature of the application code, after
code verification, by the actor who performed verification.

5.3 Security Objectives Rationale

5.3.1 Threats

5.3.1.1 CONFIDENTIALITY

T.CONFID-APPLI-DATA This threat is countered by the security objective for the operational
environment regarding bytecode verification (OE.VERIFICATION). It is also covered by the
isolation commitments stated in the (O.FIREWALL) objective. It relies in its turn on the
correct identification of applets stated in (O.SID). Moreover, as the firewall is dynamically
enforced, it shall never stop operating, as stated in the (O.OPERATE) objective.

As the firewall is a software tool automating critical controls, the objective O.ALARM asks
for it to provide clear warning and error messages, so that the appropriate counter-measure
can be taken.

The objectives O.CARD_MANAGEMENT and OE.VERIFICATION contribute to cover this
threat by controlling the access to card management functions and by checking the
bytecode, respectively.

The objectives O.SCP.RECOVERY and O.SCP.SUPPORT are intended to support the
O.OPERATE and O.ALARM objectives of the TOE, so they are indirectly related to the threats
that these latter objectives contribute to counter.

As applets may need to share some data or communicate with the CAD, cryptographic
functions are required to actually protect the exchanged information (O.CIPHER, O.RNG).
Remark that even if the TOE shall provide access to the appropriate TSFs, it is still the
responsibility of the applets to use them. Keys, PIN's are particular cases of an application's
sensitive data (the Java Card System may possess keys as well) that ask for appropriate
management (O.KEY-MNGT, O.PIN-MNGT, O.TRANSACTION). If the PIN class of the Java
Card API is used, the objective (O.FIREWALL) shall contribute in covering this threat by
controlling the sharing of the global PIN between the applets.

Other application data that is sent to the applet as clear text arrives to the APDU buffer,
which is a resource shared by all applications. The disclosure of such data is prevented by
the security objective O.GLOBAL_ARRAYS_CONFID.

Finally, any attempt to read a piece of information that was previously used by an
application but has been logically deleted is countered by the O.REALLOCATION objective.
That objective states that any information that was formerly stored in a memory block shall
be cleared before the block is reused.

T.CONFID-JCS-CODE This threat is countered by the list of properties described in the
(#.VERIFICATION) security aspect. Bytecode verification ensures that each of the
instructions used on the Java Card platform is used for its intended purpose and in the
intended scope of accessibility. As none of those instructions enables reading a piece of
code, no Java Card applet can therefore be executed to disclose a piece of code. Native

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 48/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

applications are also harmless thanks to the objective O.NATIVE, so no application can be
run to disclose a piece of code.

The (#.VERIFICATION) security aspect is addressed in this ST by the objective for the
environment OE.VERIFICATION.

The objectives O.CARD_MANAGEMENT and OE.VERIFICATION contribute to cover this
threat by controlling the access to card management functions and by checking the
bytecode, respectively.

T.CONFID-JCS-DATA This threat is covered by bytecode verification (OE.VERIFICATION)
and the isolation commitments stated in the (O.FIREWALL) security objective. This latter
objective also relies in its turn on the correct identification of applets stated in (O.SID).
Moreover, as the firewall is dynamically enforced, it shall never stop operating, as stated in
the (O.OPERATE) objective.

As the firewall is a software tool automating critical controls, the objective O.ALARM asks
for it to provide clear warning and error messages, so that the appropriate counter-measure
can be taken.

The objectives O.CARD_MANAGEMENT and OE.VERIFICATION contribute to cover this
threat by controlling the access to card management functions and by checking the
bytecode, respectively.

The objectives O.SCP.RECOVERY and O.SCP.SUPPORT are intended to support the
O.OPERATE and O.ALARM objectives of the TOE, so they are indirectly related to the threats
that these latter objectives contribute to counter.

5.3.1.2 INTEGRITY

T.INTEG-APPLI-CODE This threat is countered by the list of properties described in the
(#.VERIFICATION) security aspect. Bytecode verification ensures that each of the
instructions used on the Java Card platform is used for its intended purpose and in the
intended scope of accessibility. As none of these instructions enables modifying a piece of
code, no Java Card applet can therefore be executed to modify a piece of code. Native
applications are also harmless thanks to the objective O.NATIVE, so no application can be
run to disclose a piece of code.

The (#.VERIFICATION) security aspect is addressed in this configuration by the objective
for the environment OE.VERIFICATION.

The objectives O.CARD_MANAGEMENT and OE.VERIFICATION contribute to cover this
threat by controlling the access to card management functions and by checking the
bytecode, respectively.

The objective OE.CODE-EVIDENCE contributes to cover this threat by ensuring that integrity
and authenticity evidences exist for the application code loaded into the platform.

T.INTEG-APPLI-CODE.LOAD This threat is countered by the security objective O.LOAD
which ensures that the loading of packages is done securely and thus preserves the integrity
of packages code. The objective OE.CODE-EVIDENCE contributes to cover this threat by
ensuring that the application code loaded into the platform has not been changed after
code verification, which ensures code integrity and authenticity. By controlling the access

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 49/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

to card management functions such as the installation, update or deletion of applets the
objective O.CARD_MANAGEMENT contributes to cover this threat.

T.INTEG-APPLI-DATA This threat is countered by bytecode verification (OE.VERIFICATION)
and the isolation commitments stated in the (O.FIREWALL) objective. This latter objective
also relies in its turn on the correct identification of applets stated in (O.SID). Moreover, as
the firewall is dynamically enforced, it shall never stop operating, as stated in the
(O.OPERATE) objective. As the firewall is a software tool automating critical controls, the
objective O.ALARM asks for it to provide clear warning and error messages, so that the
appropriate counter-measure can be taken. The objectives O.CARD_MANAGEMENT and
OE.VERIFICATION contribute to cover this threat by controlling the access to card
management functions and by checking the bytecode, respectively. The objective
OE.CODE-EVIDENCE contributes to cover this threat by ensuring that the application code
loaded into the platform has not been changed after code verification, which ensures code
integrity and authenticity. The objectives O.SCP.RECOVERY and O.SCP.SUPPORT are
intended to support the O.OPERATE and O.ALARM objectives of the TOE, so they are
indirectly related to the threats that these latter objectives contribute to counter.
Concerning the confidentiality and integrity of application sensitive data, as applets may
need to share some data or communicate with the CAD, cryptographic functions are
required to actually protect the exchanged information (O.CIPHER, O.RNG). Remark that
even if the TOE shall provide access to the appropriate TSFs, it is still the responsibility of
the applets to use them. Keys and PIN's are particular cases of an application's sensitive
data (the Java Card System may possess keys as well) that ask for appropriate management
(O.KEY-MNGT, O.PIN-MNGT, O.TRANSACTION). If the PIN class of the Java Card API is
used, the objective (O.FIREWALL) is also concerned. Other application data that is sent to
the applet as clear text arrives to the APDU buffer, which is a resource shared by all
applications. The integrity of the information stored in that buffer is ensured by the objective
O.GLOBAL_ARRAYS_INTEG. Finally, any attempt to read a piece of information that was
previously used by an application but has been logically deleted is countered by the
O.REALLOCATION objective. That objective states that any information that was formerly
stored in a memory block shall be cleared before the block is reused.

T.INTEG-APPLI-DATA.LOAD This threat is countered by the security objective O.LOAD
which ensures that the loading of packages is done securely and thus preserves the integrity
of applications data. The objective OE.CODE-EVIDENCE contributes to cover this threat by
ensuring that the application code loaded into the platform has not been changed after
code verification, which ensures code integrity and authenticity. By controlling the access
to card management functions such as the installation, update or deletion of applets the
objective O.CARD_MANAGEMENT contributes to cover this threat.

T.INTEG-JCS-CODE This threat is countered by the list of properties described in the
(#.VERIFICATION) security aspect. Bytecode verification ensures that each of the
instructions used on the Java Card platform is used for its intended purpose and in the
intended scope of accessibility. As none of these instructions enables modifying a piece of
code, no Java Card applet can therefore be executed to modify a piece of code. Native
applications are also harmless thanks to the objective O.NATIVE, so no application can be
run to disclose a piece of code.

The (#.VERIFICATION) security aspect is addressed in this configuration by the objective
for the environment OE.VERIFICATION. The objectives O.CARD_MANAGEMENT and
OE.VERIFICATION contribute to cover this threat by controlling the access to card

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 50/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

management functions and by checking the bytecode, respectively. The objective
OE.CODE-EVIDENCE contributes to cover this threat by ensuring that the application code
loaded into the platform has not been changed after code verification, which ensures code
integrity and authenticity.

T.INTEG-JCS-DATA This threat is countered by bytecode verification (OE.VERIFICATION)
and the isolation commitments stated in the (O.FIREWALL) objective. This latter objective
also relies in its turn on the correct identification of applets stated in (O.SID). Moreover, as
the firewall is dynamically enforced, it shall never stop operating, as stated in the
(O.OPERATE) objective. As the firewall is a software tool automating critical controls, the
objective O.ALARM asks for it to provide clear warning and error messages, so that the
appropriate counter-measure can be taken. The objectives O.CARD_MANAGEMENT and
OE.VERIFICATION contribute to cover this threat by controlling the access to card
management functions and by checking the bytecode, respectively. The objective
OE.CODE-EVIDENCE contributes to cover this threat by ensuring that the application code
loaded into the platform has not been changed after code verification, which ensures code
integrity and authenticity. The objectives O.SCP.RECOVERY and O.SCP.SUPPORT are
intended to support the O.OPERATE and O.ALARM objectives of the TOE, so they are
indirectly related to the threats that these latter objectives contribute to counter.

5.3.1.3 IDENTITY USURPATION

T.SID.1 As impersonation is usually the result of successfully disclosing and modifying some
assets, this threat is mainly countered by the objectives concerning the isolation of
application data (like PINs), ensured by the (O.FIREWALL). Uniqueness of subject-identity
(O.SID) also participates to face this threat. It should be noticed that the AIDs, which are
used for applet identification, are TSF data.

In this configuration, usurpation of identity resulting from a malicious installation of an
applet on the card is covered by the objective O.INSTALL.

The installation parameters of an applet (like its name) are loaded into a global array that
is also shared by all the applications. The disclosure of those parameters (which could be
used to impersonate the applet) is countered by the objectives
O.GLOBAL_ARRAYS_CONFID and O.GLOBAL_ARRAYS_INTEG.

The objective O.CARD_MANAGEMENT contributes, by preventing usurpation of identity
resulting from a malicious installation of an applet on the card, to counter this threat.

T.SID.2 This is covered by integrity of TSF data, subject-identification (O.SID), the firewall
(O.FIREWALL) and its good working order (O.OPERATE).

The objective O.INSTALL contributes to counter this threat by ensuring that installing an
applet has no effect on the state of other applets and thus can't change the TOE's attribution
of privileged roles.

The objectives O.SCP.RECOVERY and O.SCP.SUPPORT are intended to support the
O.OPERATE objective of the TOE, so they are indirectly related to the threats that this latter
objective contributes to counter.

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 51/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

5.3.1.4 UNAUTHORIZED EXECUTION

T.EXE-CODE.1 Unauthorized execution of a method is prevented by the objective
OE.VERIFICATION. This threat particularly concerns the point (8) of the security aspect
#VERIFICATION (access modifiers and scope of accessibility for classes, fields and
methods). The O.FIREWALL objective is also concerned, because it prevents the execution
of non-shareable methods of a class instance by any subject apart from the class instance
owner.

T.EXE-CODE.2 Unauthorized execution of a method fragment or arbitrary data is prevented
by the objective OE.VERIFICATION. This threat particularly concerns those points of the
security aspect related to control flow confinement and the validity of the method references
used in the bytecodes.

T.NATIVE This threat is countered by O.NATIVE which ensures that a Java Card applet can
only access native methods indirectly that is, through an API. OE.APPLET also covers this
threat by ensuring that no native applets shall be loaded in post-issuance. In addition to
this, the bytecode verifier also prevents the program counter of an applet to jump into a
piece of native code by confining the control flow to the currently executed method
(OE.VERIFICATION).

5.3.1.5 DENIAL OF SERVICE

T.RESOURCES This threat is directly countered by objectives on resource-management
(O.RESOURCES) for runtime purposes and good working order (O.OPERATE) in a general
manner.

Consumption of resources during installation and other card management operations are
covered, in case of failure, by O.INSTALL.

It should be noticed that, for what relates to CPU usage, the Java Card platform is single-
threaded and it is possible for an ill-formed application (either native or not) to monopolize
the CPU. However, a smart card can be physically interrupted (card removal or hardware
reset) and most CADs implement a timeout policy that prevent them from being blocked
should a card fails to answer. That point is out of scope of this Security Target, though.

Finally, the objectives O.SCP.RECOVERY and O.SCP.SUPPORT are intended to support the
O.OPERATE and O.RESOURCES objectives of the TOE, so they are indirectly related to the
threats that these latter objectives contribute to counter.

5.3.1.6 CARD MANAGEMENT

T.DELETION This threat is covered by the O.DELETION security objective which ensures that
both applet and package deletion perform as expected.

The objective O.CARD_MANAGEMENT controls the access to card management functions
and thus contributes to cover this threat.

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 52/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

T.INSTALL This threat is covered by the security objective O.INSTALL which ensures that the
installation of an applet performs as expected and the security objectives O.LOAD which
ensures that the loading of a package into the card is safe.

The objective O.CARD_MANAGEMENT controls the access to card management functions
and thus contributes to cover this threat.

5.3.1.7 SERVICES

T.OBJ-DELETION This threat is covered by the O.OBJ-DELETION security objective which
ensures that object deletion shall not break references to objects.

5.3.1.8 MISCELLANEOUS

T.PHYSICAL Covered by O.SCP.IC. Physical protections rely on the underlying platform and
are therefore an environmental issue.

5.3.1.9 Additional threats

T.CONFIGURATION This threat is covered by O.RESIDENT_APPLICATION.

This objective ensures that any operation in the prepersonalisation phase need
authentication, it ensures also that D.CONFIG is loaded protected from theft and
modification such as an attacker cannot observe or modify configuration information
exchanged between the TOE and its environment.

T.CONF_DATA_APPLET This threat is covered by the O.SECURE_COMPARE security
objective.

If an attacker tries to catch confidential information "D.ARRAY", the objective
O.SECURE_COMPARE ensures that no residual information is available to the attacker.

T.PATCH_LOADING This threat is covered by O.PATCH_LOADING security objective.

If an attacker tries to avoid the loading of a patch or alter a patch (during loading or once
loaded), O.PATCH_LOADING ensures trustable identification and authentication (static
signature) data of the loaded patch are returned by the TOE. This information enables to
check the presence of the genuine patch. Moreover, O.PATCH_LOADING, ensures
authentication of the entity loading the patch before the patch is loaded in the TOE.

5.3.2 Organisational Security Policies

OSP.VERIFICATION This policy is upheld by the security objective of the environment
OE.VERIFICATION which guarantees that all the bytecodes shall be verified at least once,
before the loading, before the installation or before the execution in order to ensure that
each bytecode is valid at execution time. This policy is also upheld by the security objective
of the environment OE.CODE-EVIDENCE which ensures that evidences exist that the
application code has been verified and not changed after verification, and by the security

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 53/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

objective for the TOE O.LOAD which shall ensure that the loading of a package into the
card is safe.

5.3.3 Assumptions

A.APPLET This assumption is upheld by the security objective for the operational environment
OE.APPLET which ensures that no applet loaded post-issuance shall contain native methods.

A.VERIFICATION This assumption is upheld by the security objective on the operational
environment OE.VERIFICATION which guarantees that all the bytecodes shall be verified at
least once, before the loading, before the installation or before the execution in order to
ensure that each bytecode is valid at execution time. This assumption is also upheld by the
security objective of the environment OE.CODE-EVIDENCE which ensures that evidences
exist that the application code has been verified and not changed after verification.

5.3.4 SPD and Security Objectives

Threats Security Objectives Rationale

T.CONFID-APPLI-DATA OE.VERIFICATION, O.SID, O.OPERATE,
O.FIREWALL, O.GLOBAL_ARRAYS_CONFID,
O.ALARM, O.TRANSACTION, O.CIPHER, O.PIN-
MNGT, O.KEY-MNGT, O.REALLOCATION,
O.SCP.RECOVERY, O.SCP.SUPPORT,
O.CARD_MANAGEMENT, O.RNG

Section 5.3.1

T.CONFID-JCS-CODE OE.VERIFICATION, O.NATIVE,
O.CARD_MANAGEMENT

Section 5.3.1

T.CONFID-JCS-DATA OE.VERIFICATION, O.SID, O.OPERATE,
O.FIREWALL, O.ALARM, O.SCP.RECOVERY,
O.SCP.SUPPORT, O.CARD_MANAGEMENT

Section 5.3.1

T.INTEG-APPLI-CODE OE.VERIFICATION, O.NATIVE, OE.CODE-
EVIDENCE, O.CARD_MANAGEMENT

Section 5.3.1

T.INTEG-APPLI-
CODE.LOAD

O.LOAD, OE.CODE-EVIDENCE,
O.CARD_MANAGEMENT

Section 5.3.1

T.INTEG-APPLI-DATA OE.VERIFICATION, O.SID, O.OPERATE,
O.FIREWALL, O.GLOBAL_ARRAYS_INTEG,
O.ALARM, O.TRANSACTION, O.CIPHER, O.PIN-
MNGT, O.KEY-MNGT, O.REALLOCATION,
O.SCP.RECOVERY, O.SCP.SUPPORT, OE.CODE-
EVIDENCE, O.CARD_MANAGEMENT, O.RNG

Section 5.3.1

T.INTEG-APPLI-
DATA.LOAD

O.LOAD, OE.CODE-EVIDENCE,
O.CARD_MANAGEMENT

Section 5.3.1

T.INTEG-JCS-CODE OE.VERIFICATION, O.NATIVE, OE.CODE-
EVIDENCE, O.CARD_MANAGEMENT

Section 5.3.1

T.INTEG-JCS-DATA OE.VERIFICATION, O.SID, O.OPERATE,
O.FIREWALL, O.ALARM, O.SCP.RECOVERY,

Section 5.3.1

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 54/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

Threats Security Objectives Rationale

O.SCP.SUPPORT, OE.CODE-EVIDENCE,
O.CARD_MANAGEMENT

T.SID.1 O.FIREWALL, O.GLOBAL_ARRAYS_CONFID,
O.GLOBAL_ARRAYS_INTEG, O.INSTALL, O.SID,
O.CARD_MANAGEMENT

Section 5.3.1

T.SID.2 O.SID, O.OPERATE, O.FIREWALL, O.INSTALL,
O.SCP.RECOVERY, O.SCP.SUPPORT

Section 5.3.1

T.EXE-CODE.1 OE.VERIFICATION, O.FIREWALL Section 5.3.1

T.EXE-CODE.2 OE.VERIFICATION Section 5.3.1

T.NATIVE OE.VERIFICATION, O.NATIVE, OE.APPLET Section 5.3.1

T.RESOURCES O.INSTALL, O.OPERATE, O.RESOURCES,
O.SCP.RECOVERY, O.SCP.SUPPORT

Section 5.3.1

T.DELETION O.DELETION, O.CARD_MANAGEMENT Section 5.3.1

T.INSTALL O.INSTALL, O.LOAD, O.CARD_MANAGEMENT Section 5.3.1

T.OBJ-DELETION O.OBJ-DELETION Section 5.3.1

T.PHYSICAL O.SCP.IC Section 5.3.1

T.CONFIGURATION O.RESIDENT_APPLICATION Section 5.3.1

T.CONF_DATA_APPLET O.SECURE_COMPARE Section 5.3.1

T.PATCH_LOADING O.PATCH_LOADING Section 5.3.1

Table 5 Threats and Security Objectives - Coverage

Security Objectives Threats

O.SID T.CONFID-APPLI-DATA, T.CONFID-JCS-DATA,
T.INTEG-APPLI-DATA, T.INTEG-JCS-DATA,
T.SID.1, T.SID.2

O.FIREWALL T.CONFID-APPLI-DATA, T.CONFID-JCS-DATA,
T.INTEG-APPLI-DATA, T.INTEG-JCS-DATA,
T.SID.1, T.SID.2, T.EXE-CODE.1

O.GLOBAL_ARRAYS_CONFID T.CONFID-APPLI-DATA, T.SID.1

O.GLOBAL_ARRAYS_INTEG T.INTEG-APPLI-DATA, T.SID.1

O.NATIVE T.CONFID-JCS-CODE, T.INTEG-APPLI-CODE,
T.INTEG-JCS-CODE, T.NATIVE

O.OPERATE T.CONFID-APPLI-DATA, T.CONFID-JCS-DATA,
T.INTEG-APPLI-DATA, T.INTEG-JCS-DATA,
T.SID.2, T.RESOURCES

O.REALLOCATION T.CONFID-APPLI-DATA, T.INTEG-APPLI-DATA

O.RESOURCES T.RESOURCES

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 55/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

Security Objectives Threats

O.ALARM T.CONFID-APPLI-DATA, T.CONFID-JCS-DATA,
T.INTEG-APPLI-DATA, T.INTEG-JCS-DATA

O.CIPHER T.CONFID-APPLI-DATA, T.INTEG-APPLI-DATA

O.RNG T.CONFID-APPLI-DATA, T.INTEG-APPLI-DATA

O.KEY-MNGT T.CONFID-APPLI-DATA, T.INTEG-APPLI-DATA

O.PIN-MNGT T.CONFID-APPLI-DATA, T.INTEG-APPLI-DATA

O.TRANSACTION T.CONFID-APPLI-DATA, T.INTEG-APPLI-DATA

O.OBJ-DELETION T.OBJ-DELETION

O.DELETION T.DELETION

O.LOAD T.INTEG-APPLI-CODE.LOAD, T.INTEG-APPLI-
DATA.LOAD, T.INSTALL

O.INSTALL T.SID.1, T.SID.2, T.RESOURCES, T.INSTALL

O.SCP.SUPPORT T.CONFID-APPLI-DATA, T.CONFID-JCS-DATA,
T.INTEG-APPLI-DATA, T.INTEG-JCS-DATA,
T.SID.2, T.RESOURCES

O.SCP.IC T.PHYSICAL

O.SCP.RECOVERY T.CONFID-APPLI-DATA, T.CONFID-JCS-DATA,
T.INTEG-APPLI-DATA, T.INTEG-JCS-DATA,
T.SID.2, T.RESOURCES

O.RESIDENT_APPLICATION T.CONFIGURATION

O.CARD_MANAGEMENT T.CONFID-APPLI-DATA, T.CONFID-JCS-CODE,
T.CONFID-JCS-DATA, T.INTEG-APPLI-CODE,
T.INTEG-APPLI-CODE.LOAD, T.INTEG-APPLI-
DATA, T.INTEG-APPLI-DATA.LOAD, T.INTEG-
JCS-CODE, T.INTEG-JCS-DATA, T.SID.1,
T.DELETION, T.INSTALL

O.SECURE_COMPARE T.CONF_DATA_APPLET

O.PATCH_LOADING T.PATCH_LOADING

OE.APPLET T.NATIVE

OE.VERIFICATION T.CONFID-APPLI-DATA, T.CONFID-JCS-CODE,
T.CONFID-JCS-DATA, T.INTEG-APPLI-CODE,
T.INTEG-APPLI-DATA, T.INTEG-JCS-CODE,
T.INTEG-JCS-DATA, T.EXE-CODE.1, T.EXE-
CODE.2, T.NATIVE

OE.CODE-EVIDENCE T.INTEG-APPLI-CODE, T.INTEG-APPLI-
CODE.LOAD, T.INTEG-APPLI-DATA, T.INTEG-
APPLI-DATA.LOAD, T.INTEG-JCS-CODE,
T.INTEG-JCS-DATA

Table 6 Security Objectives and Threats - Coverage

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 56/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

Organisational Security
Policies

Security Objectives Rationale

OSP.VERIFICATION OE.VERIFICATION, OE.CODE-EVIDENCE,
O.LOAD

Section 5.3.2

Table 7 OSPs and Security Objectives - Coverage

Security Objectives Organisational Security Policies

O.SID

O.FIREWALL

O.GLOBAL_ARRAYS_CONFID

O.GLOBAL_ARRAYS_INTEG

O.NATIVE

O.OPERATE

O.REALLOCATION

O.RESOURCES

O.ALARM

O.CIPHER

O.RNG

O.KEY-MNGT

O.PIN-MNGT

O.TRANSACTION

O.OBJ-DELETION

O.DELETION

O.LOAD OSP.VERIFICATION

O.INSTALL

O.SCP.SUPPORT

O.SCP.IC

O.SCP.RECOVERY

O.RESIDENT_APPLICATION

O.CARD_MANAGEMENT

O.SECURE_COMPARE

O.PATCH_LOADING

OE.APPLET

OE.VERIFICATION OSP.VERIFICATION

OE.CODE-EVIDENCE OSP.VERIFICATION

Table 8 Security Objectives and OSPs - Coverage

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 57/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

Assumptions Security Objectives for the Operational
Environment

Rationale

A.APPLET OE.APPLET Section 5.3.3

A.VERIFICATION OE.VERIFICATION, OE.CODE-EVIDENCE Section 5.3.3

Table 9 Assumptions and Security Objectives for the Operational Environment - Coverage

Security Objectives for the Operational
Environment

Assumptions

OE.APPLET A.APPLET

OE.VERIFICATION A.VERIFICATION

OE.CODE-EVIDENCE A.VERIFICATION

Table 10 Security Objectives for the Operational Environment and Assumptions -

Coverage

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 58/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

6 Extended Requirements

6.1 Extended Families

6.1.1 Extended Family FCS_RNG - Random Number Generation

6.1.1.1 Description

This family defines quality requirements for the generation of random numbers which are
intended to be used for cryptographic purposes.

6.1.1.2 Extended Components

Extended Component FCS_RNG.1

Description

A physical random number generator (RNG) produces the random number by a noise source
based on physical random processes. A non-physical true RNG uses a noise source based on
non-physical random processes like human interaction (key strokes, mouse movement). A
deterministic RNG uses a random seed to produce a pseudorandom output. A hybrid RNG
combines the principles of physical and deterministic RNGs.

Definition

FCS_RNG.1 Random Number Generation

FCS_RNG.1.1 The TSF shall provide a [selection: physical, non-physical true, deterministic
hybrid] random number generator that implements [assignment: list of security
capabilities].

FCS_RNG.1.2 The TSF shall provide random numbers that meet [assignment: a defined
quality metric].

 Dependencies: No dependencies.

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 59/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

7 Security Requirements

7.1 Security Functional Requirements

This section states the security functional requirements for the Java Card System - Open
configuration. For readability and for compatibility with the original Java Card System
Protection Profile Collection - Standard 2.2 Configuration [R30], requirements are arranged
into groups. All the groups defined in the table below apply to this Security Target.

Group Description

Core with Logical
Channels
(CoreG_LC)

The CoreG_LC contains the requirements concerning the runtime
environment of the Java Card System implementing logical channels.
This includes the firewall policy and the requirements related to the Java
Card API. Logical channels are a Java Card specification version 2.2
feature. This group is the union of requirements from the Core (CoreG)
and the Logical channels (LCG) groups defined in [R30] (cf. Java Card
System Protection Profile Collection [R30]).

Installation
(InstG)

The InstG contains the security requirements concerning the installation
of post-issuance applications. It does not address card management
issues in the broad sense, but only those security aspects of the
installation procedure that are related to applet execution.

Applet deletion
(ADELG)

The ADELG contains the security requirements for erasing installed
applets from the card, a feature introduced in Java Card specification
version 2.2.

Object deletion
(ODELG)

The ODELG contains the security requirements for the object deletion
capability. This provides a safe memory recovering mechanism. This is a
Java Card specification version 2.2 feature.

Secure carrier
(CarG)

The CarG group contains minimal requirements for secure downloading
of applications on the card. This group contains the security
requirements for preventing the installation of a package that has not
been bytecode verified, or that has been modified after bytecode
verification.

Subjects are active components of the TOE that (essentially) act on the behalf of users. The
users of the TOE include people or institutions (like the applet developer, the card issuer, the
verification authority), hardware (like the CAD where the card is inserted or the PCD) and
software components (like the application packages installed on the card). Some of the users
may just be aliases for other users. For instance, the verification authority in charge of the
bytecode verification of the applications may be just an alias for the card issuer.

Objects (prefixed with an "O") are described in the following table:

Object Description

O.APPLET Any installed applet, its code and data

O.CODE_PKG The code of a package, including all linking information. On the Java
Card platform, a package is the installation unit

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 60/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

O.JAVAOBJECT Java class instance or array. It should be noticed that KEYS, PIN,
arrays and applet instances are specific objects in the Java
programming language

Information (prefixed with an "I") is described in the following table:

Information Description

I.APDU Any APDU sent to or from the card through the communication channel.

I.DATA JCVM Reference Data: objectref addresses of APDU buffer, JCRE-owned
instances of APDU class and byte array for install method.

Security attributes linked to these subjects, objects and information are described in the
following table with their values:

Security attribute Description/Value

Active Applets The set of the active applets' AIDs. An active applet is an applet that is
selected on at least one of the logical channels.

Applet Selection
Status

"Selected" or "Deselected".

Applet's version
number

The version number of an applet (package) indicated in the export file.

Context Package AID or "Java Card RE".

COD Context
attribute

Delimits the space occupied in volatile memory by the data of the
CLEAR_ON_DESELECT transient arrays of a package

COR Context
attribute

Delimits the space occupied in volatile memory by the data of the
CLEAR_ON_RESET transient arrays of a package

Current Frame
Context

The lower and upper Boundary of the local variables area on the stack
frame for a method and the lower and upper Boundary of the operand
stack area on the stack frame for a method

Currently Active
Context

Package AID or "Java Card RE".

Dependent
package AID

Allows the retrieval of the Package AID and Applet's version number
([R8], §4.5.2).

ExportedInfo
Boolean

(indicates whether the remote object is exportable or not).

Identifier The Identifier of a remote object or method is a number that uniquely
identifies the remote object or method, respectively.

LC Selection
Status

Multiselectable, Non-multiselectable or "None".

LifeTime CLEAR_ON_DESELECT or PERSISTENT (*) or CLEAR_ON_RESET

Object Boundary Delimits the space occupied by an object in the heap

Owner The Owner of an object is either the applet instance that created the
object or the package (library) where it has been defined (these latter

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 61/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

Security attribute Description/Value

objects can only be arrays that initialize static fields of the package). The
owner of a remote object is the applet instance that created the object.

Package AID The AID of each package indicated in the export file.

Package
Boundary

Delimits the space occupied by the code and the static fields of a
package

Program Counter Position of the next Bytecode to executed

Registered
Applets

The set of AID of the applet instances registered on the card.

Resident
Packages

The set of AIDs of the packages already loaded on the card.

Selected Applet
Context

Package AID or "None".

Sharing Standards, SIO, Java Card RE entry point or global array.

Stack Pointer Position of the next free slot in the stack

Static Fields Static fields of a package

Static References Static fields of a package may contain references to objects. The Static
References attribute records those references.

(*) Transient objects of type CLEAR_ON_DESELECT behave like persistent objects in that they
can be accessed only when the Currently Active Context is the object's context.

Operations (prefixed with "OP") are described in the following table. Each operation has
parameters given between brackets, among which there is the "accessed object", the first one,
when applicable. Parameters may be seen as security attributes that are under the control of
the subject performing the operation.

Operation Description

OP.ARRAY_ACCESS (O.JAVAOBJECT, field) Read/Write an array component.

OP.ARRAY_LENGTH (O.JAVAOBJECT, field) Get length of an array component

OP.ARRAY_AASTORE(O.JAVAOBJECT,
field)

Store into reference array component

OP.CREATE (Sharing, LifeTime) (*) Creation of an object (new or makeTransient
call).

OP.DELETE_APPLET (O.APPLET,...) Delete an installed applet and its objects, either
logically or physically.

OP.DELETE_PCKG (O.CODE_PKG,...) Delete a package, either logically or physically.

OP.DELETE_PCKG_APPLET
(O.CODE_PKG,...)

Delete a package and its installed applets,
either logically or physically.

OP.FLOW (O.CODE_PKG) Any operation that modify the execution flow

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 62/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

Operation Description

OP.IMPORT_KEY Import of the keys

OP.INSTANCE_FIELD (O.JAVAOBJECT,
field)

Read/Write a field of an instance of a class in
the Java programming language.

OP.INVK_INTERFACE (O.JAVAOBJECT,
method, arg1,...)

Invoke an interface method.

OP.INVK_VIRTUAL (O.JAVAOBJECT,
method, arg1,...)

Invoke a virtual method (either on a class
instance or an array object).

OP.JAVA (...) Any access in the sense of [R7], §6.2.8. It
stands for one of the operations
OP.ARRAY_ACCESS, OP.INSTANCE_FIELD,
OP.INVK_VIRTUAL, OP.INVK_INTERFACE,
OP.THROW, OP.TYPE_ACCESS.

OP.LOCAL_STACK_ACCESS (...) Any operation that read or write the local stack

OP.OPERAND_STACK_ACCESS (...) Any operation that push or pop items on the
operand stack

OP.PUT (S1,S2,I) Transfer a piece of information I from S1 to S2.

OP.STATIC_FIELD (O.CODE_PKG, field) Read/Write a static field of a class in the JAVA
programming language

OP.THROW (O.JAVAOBJECT) Throwing of an object (athrow, see [R7],
§6.2.8.7).

OP.TYPE_ACCESS (O.JAVAOBJECT, class) Invoke checkcast or instanceof on an object in
order to access to classes (standard or
shareable interfaces objects).

OP.NATIVE_ACCESS Any read, write or execution access to the code
and data elements

OP.NATIVE_INTERFACE_CALL Any execution of a native service via a call to
its interface

Cardholder Authentication Authentication of the cardholder

U.Card_Issuer authentication Authentication of U.Card_Issuer

(*) For this operation, there is no accessed object. This rule enforces that shareable transient
objects are not allowed, except some objects, such as COR. For more information refer to the
Java Doc [R6]. For instance, during the creation of an object, the JavaCardClass attribute's
value is chosen by the creator.

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 63/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

7.1.1 CoreG_LC Security Functional Requirements

This group is focused on the main security policy of the Java Card System, known as the
firewall.

7.1.1.1 Firewall Policy

FDP_ACC.2/FIREWALL Complete access control

FDP_ACC.2.1/FIREWALL The TSF shall enforce the FIREWALL access control SFP on
S.PACKAGE, S.JCRE, S.JCVM, O.JAVAOBJECT and all operations among subjects and
objects covered by the SFP.

Refinement:

The operations involved in the policy are:

o OP.CREATE,

o OP.INVK_INTERFACE,

o OP.INVK_VIRTUAL,

o OP.JAVA,

o OP.THROW,

o OP.TYPE_ACCESS,

o OP.ARRAY_LENGTH,

o OP.ARRAY_AASTORE.

FDP_ACC.2.2/FIREWALL The TSF shall ensure that all operations between any subject
controlled by the TSF and any object controlled by the TSF are covered by an access control
SFP.

Application Note:

It should be noticed that accessing array's components of a static array, and more generally
fields and methods of static objects, is an access to the corresponding O.JAVAOBJECT.

FDP_ACF.1/FIREWALL Security attribute based access control

FDP_ACF.1.1/FIREWALL The TSF shall enforce the FIREWALL access control SFP to
objects based on the following:

Subject/Object Security attributes

S.PACKAGE LC Selection Status

S.JCVM Active Applets, Currently Active Context

S.JCRE Selected Applet Context

O.JAVAOBJECT Sharing, Context, LifeTime

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 64/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

FDP_ACF.1.2/FIREWALL The TSF shall enforce the following rules to determine if an
operation among controlled subjects and controlled objects is allowed:

o R.JAVA.1 ([R7], §6.2.8): S.PACKAGE may freely perform
OP.INVK_VIRTUAL, OP.INVK_INTERFACE, OP.THROW or
OP.TYPE_ACCESS upon any O.JAVAOBJECT whose Sharing attribute has
value "JCRE entry point" or "global array".

o R.JAVA.2 ([R7], §6.2.8): S.PACKAGE may freely perform
OP.ARRAY_ACCESS, OP.INSTANCE_FIELD, OP.INVK_VIRTUAL,
OP.INVK_INTERFACE or OP.THROW upon any O.JAVAOBJECT whose
Sharing attribute has value "Standard" and whose Lifetime attribute has
value "PERSISTENT" only if O.JAVAOBJECT's Context attribute has the
same value as the active context.

o R.JAVA.3 ([R7], §6.2.8.10): S.PACKAGE may perform OP.TYPE_ACCESS
upon an O.JAVAOBJECT whose Sharing attribute has value "SIO" only if
O.JAVAOBJECT is being cast into (checkcast) or is being verified as being
an instance of (instanceof) an interface that extends the Shareable
interface.

o R.JAVA.4 ([R7], §6.2.8.6): S.PACKAGE may perform
OP.INVK_INTERFACE upon an O.JAVAOBJECT whose Sharing attribute
has the value "SIO", and whose Context attribute has the value "Package
AID", only if the invoked interface method extends the Shareable
interface and one of the following conditions applies:

o a) The value of the attribute Selection Status of the package whose AID
is "Package AID" is "Multiselectable",

o b) The value of the attribute Selection Status of the package whose AID
is "Package AID" is "Non-multiselectable", and either "Package AID" is
the value of the currently selected applet or otherwise "Package AID"
does not occur in the attribute Active Applets.

o R.JAVA.5: S.PACKAGE may perform OP.CREATE upon O.JAVAOBJECT only
if the value of the Sharing parameter is "Standard" or "SIO".

o R.JAVA.6 ([R7], §6.2.8): S.PACKAGE may freely perform
OP.ARRAY_ACCESS or OP.ARRAY_LENGTH upon any O.JAVAOBJECT
whose Sharing attribute has value "global array".

FDP_ACF.1.3/FIREWALL The TSF shall explicitly authorise access of subjects to objects
based on the following additional rules:

o The subject S.JCRE can freely perform OP.JAVA() and OP.CREATE, with
the exception given in FDP_ACF.1.4/FIREWALL, provided it is the
Currently Active Context.

o The only means that the subject S.JCVM shall provide for an application
to execute native code is the invocation of a Java Card API method
(through OP.INVK_INTERFACE or OP.INVK_VIRTUAL).

FDP_ACF.1.4/FIREWALL The TSF shall explicitly deny access of subjects to objects based
on the following additional rules:

o Any subject with OP.JAVA upon an O.JAVAOBJECT whose LifeTime
attribute has value "CLEAR_ON_DESELECT" if O.JAVAOBJECT's Context
attribute is not the same as the Selected Applet Context.

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 65/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

o Any subject attempting to create an object by the means of OP.CREATE
and a "CLEAR_ON_DESELECT" LifeTime parameter if the active context
is not the same as the Selected Applet Context.

o S.PACKAGE performing OP.ARRAY_AASTORE of the reference of an
O.JAVAOBJECT whose sharing attribute has value “global array” or
“Temporary JCRE entry point”.

o S.PACKAGE performing OP.PUTFIELD or OP.PUTSTATIC of the reference
of an O.JAVAOBJECT whose sharing attribute has value “global array” or
“Temporary JCRE entry point”.

Application Note:

FDP_ACF.1.4/FIREWALL:

 The deletion of applets may render some O.JAVAOBJECT inaccessible, and the Java Card
RE may be in charge of this aspect. This can be done, for instance, by ensuring that
references to objects belonging to a deleted application are considered as a null
reference. Such a mechanism is implementation-dependent.

In the case of an array type, fields are components of the array ([R28], §2.14, §2.7.7), as well
as the length; the only methods of an array object are those inherited from the Object class.

The Sharing attribute defines four categories of objects:

 Standard ones, whose both fields and methods are under the firewall policy,

 Shareable interface Objects (SIO), which provide a secure mechanism for inter-applet
communication,

 JCRE entry points (Temporary or Permanent), who have freely accessible methods but
protected fields,

 Global arrays, having both unprotected fields (including components; refer to
JavaCardClass discussion above) and methods.

When a new object is created, it is associated with the Currently Active Context. But the object
is owned by the applet instance within the Currently Active Context when the object is
instantiated ([R7], §6.1.3). An object is owned by an applet instance, by the JCRE or by the
package library where it has been defined (these latter objects can only be arrays that initialize
static fields of packages).

([R7], Glossary) Selected Applet Context. The Java Card RE keeps track of the currently
selected Java Card applet. Upon receiving a SELECT command with this applet's AID, the Java
Card RE makes this applet the Selected Applet Context. The Java Card RE sends all APDU
commands to the Selected Applet Context.

While the expression "Selected Applet Context" refers to a specific installed applet, the relevant
aspect to the policy is the context (package AID) of the selected applet. In this policy, the
"Selected Applet Context" is the AID of the selected package.

([R7], §6.1.2.1) At any point in time, there is only one active context within the Java Card VM
(this is called the Currently Active Context).

It should be noticed that the invocation of static methods (or access to a static field) is not
considered by this policy, as there are no firewall rules. They have no effect on the active
context as well and the "acting package" is not the one to which the static method belongs to
in this case.

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 66/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

It should be noticed that the Java Card platform, version 2.2.x and version 3 Classic Edition,
introduces the possibility for an applet instance to be selected on multiple logical channels at
the same time, or accepting other applets belonging to the same package being selected
simultaneously. These applets are referred to as multiselectable applets. Applets that belong
to a same package are either all multiselectable or not ([R8], §2.2.5). Therefore, the selection
mode can be regarded as an attribute of packages. No selection mode is defined for a library
package.

An applet instance will be considered an active applet instance if it is currently selected in at
least one logical channel. An applet instance is the currently selected applet instance only if it
is processing the current command. There can only be one currently selected applet instance
at a given time. ([R7], §4).

FDP_IFC.1/JCVM Subset information flow control

FDP_IFC.1.1/JCVM The TSF shall enforce the JCVM information flow control SFP on
S.JCVM, S.LOCAL, S.MEMBER, I.DATA and OP.PUT(S1, S2, I).

Application Note:

It should be noticed that references of temporary Java Card RE entry points, which cannot be
stored in class variables, instance variables or array components, are transferred from the
internal memory of the Java Card RE (TSF data) to some stack through specific APIs (Java
Card RE owned exceptions) or Java Card RE invoked methods (such as the process(APDU
apdu)); these are causes of OP.PUT(S1,S2,I) operations as well.

FDP_IFF.1/JCVM Simple security attributes

FDP_IFF.1.1/JCVM The TSF shall enforce the JCVM information flow control SFP based
on the following types of subject and information security attributes:

Subjects Security attributes

S.JCVM Currently Active Context

FDP_IFF.1.2/JCVM The TSF shall permit an information flow between a controlled subject
and controlled information via a controlled operation if the following rules hold:

o An operation OP.PUT(S1, S.MEMBER, I.DATA) is allowed if and only if the
Currently Active Context is "Java Card RE";

o other OP.PUT operations are allowed regardless of the Currently Active
Context's value.

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 67/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

FDP_IFF.1.3/JCVM The TSF shall enforce the none.

FDP_IFF.1.4/JCVM The TSF shall explicitly authorise an information flow based on the
following rules: none.

FDP_IFF.1.5/JCVM The TSF shall explicitly deny an information flow based on the following
rules: none.

Application Note:

The storage of temporary Java Card RE-owned objects references is runtime-enforced ([R7],
§6.2.8.1-3).

It should be noticed that this policy essentially applies to the execution of bytecode. Native
methods, the Java Card RE itself and possibly some API methods can be granted specific rights
or limitations through the FDP_IFF.1.3/JCVM to FDP_IFF.1.5/JCVM elements. The way the
Java Card virtual machine manages the transfer of values on the stack and local variables
(returned values, uncaught exceptions) from and to internal registers is implementation-
dependent. For instance, a returned reference, depending on the implementation of the stack
frame, may transit through an internal register prior to being pushed on the stack of the
invoker. The returned bytecode would cause more than one OP.PUT operation under this
scheme.

FDP_RIP.1/OBJECTS Subset residual information protection

FDP_RIP.1.1/OBJECTS The TSF shall ensure that any previous information content of a
resource is made unavailable upon the allocation of the resource to the following
objects: class instances and arrays.

Application Note:

The semantics of the Java programming language requires for any object field and array
position to be initialized with default values when the resource is allocated [R28], §2.5.1.

FMT_MSA.1/JCRE Management of security attributes

FMT_MSA.1.1/JCRE The TSF shall enforce the FIREWALL access control SFP to restrict
the ability to modify the security attributes Selected Applet Context to the Java Card
RE.

Application Note:

The modification of the Selected Applet Context should be performed in accordance with the
rules given in [R7], §4 and [R8], §3.4.

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 68/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

FMT_MSA.1/JCVM Management of security attributes

FMT_MSA.1.1/JCVM The TSF shall enforce the FIREWALL access control SFP and the
JCVM information flow control SFP to restrict the ability to modify the security
attributes Currently Active Context and Active Applets to the Java Card VM
(S.JCVM).

Application Note:

The modification of the Currently Active Context should be performed in accordance with the
rules given in [R7], §4 and [R8], §3.4.

FMT_MSA.2/FIREWALL_JCVM Secure security attributes

FMT_MSA.2.1/FIREWALL_JCVM The TSF shall ensure that only secure values are
accepted for all the security attributes of subjects and objects defined in the
FIREWALL access control SFP and the JCVM information flow control SFP.

Application Note:

The following rules are given as examples only. For instance, the last two rules are motivated
by the fact that the Java Card API defines only transient arrays factory methods. Future
versions may allow the creation of transient objects belonging to arbitrary classes; such
evolution will naturally change the range of "secure values" for this component.

 The Context attribute of an O.JAVAOBJECT must correspond to that of an installed applet
or be "Java Card RE".

 An O.JAVAOBJECT whose Sharing attribute is a Java Card RE entry point or a global
array necessarily has "Java Card RE" as the value for its Context security attribute.

 An O.JAVAOBJECT whose Sharing attribute value is a global array necessarily has "array

of primitive type" as a JavaCardClass security attribute's value.

 Any O.JAVAOBJECT whose Sharing attribute value is not "Standard" has a PERSISTENT-
LifeTime attribute's value.

 Any O.JAVAOBJECT whose LifeTime attribute value is not PERSISTENT has an array type
as JavaCardClass attribute's value.

FMT_MSA.3/FIREWALL Static attribute initialisation

FMT_MSA.3.1/FIREWALL The TSF shall enforce the FIREWALL access control SFP to
provide restrictive default values for security attributes that are used to enforce the SFP.

FMT_MSA.3.2/FIREWALL The TSF shall allow the [none] to specify alternative initial
values to override the default values when an object or information is created.

Application Note:

FMT_MSA.3.1/FIREWALL

 Objects' security attributes of the access control policy are created and initialized at the
creation of the object or the subject. Afterwards, these attributes are no longer mutable

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 69/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

(FMT_MSA.1/JCRE). At the creation of an object (OP.CREATE), the newly created object,
assuming that the FIREWALL access control SFP permits the operation, gets its Lifetime
and Sharing attributes from the parameters of the operation; on the contrary, its Context
attribute has a default value, which is its creator's Context attribute and AID respectively
([R7], §6.1.3). There is one default value for the Selected Applet Context that is the
default applet identifier's Context, and one default value for the Currently Active Context
that is "Java Card RE".

 The knowledge of which reference corresponds to a temporary entry point object or a
global array and which does not is solely available to the Java Card RE (and the Java
Card virtual machine).

FMT_MSA.3.2/FIREWALL

 The intent is that none of the identified roles has privileges with regard to the default
values of the security attributes. It should be noticed that creation of objects is an
operation controlled by the FIREWALL access control SFP. The operation shall fail
anyway if the created object would have had security attributes whose value violates
FMT_MSA.2.1/FIREWALL_JCVM.

FMT_MSA.3/JCVM Static attribute initialisation

FMT_MSA.3.1/JCVM The TSF shall enforce the JCVM information flow control SFP to
provide restrictive default values for security attributes that are used to enforce the SFP.

FMT_MSA.3.2/JCVM The TSF shall allow the [none] to specify alternative initial values to
override the default values when an object or information is created.

FMT_SMF.1 Specification of Management Functions

FMT_SMF.1.1 The TSF shall be capable of performing the following management functions:

o modify the Currently Active Context, the Selected Applet Context and the
Active Applets.

FMT_SMR.1 Security roles

FMT_SMR.1.1 The TSF shall maintain the roles

o Java Card RE (JCRE),

o Java Card VM (JCVM).

FMT_SMR.1.2 The TSF shall be able to associate users with roles.

7.1.1.2 Application Programming Interface

The following SFRs are related to the Java Card API.

The whole set of cryptographic algorithms is generally not implemented because of limited
memory resources and/or limitations due to exportation. Therefore, the following requirements
only apply to the implemented subset.

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 70/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

It should be noticed that the execution of the additional native code is not within the TSF.
Nevertheless, access to API native methods from the Java Card System is controlled by TSF
because there is no difference between native and interpreted methods in their interface or
invocation mechanism.

FCS_CKM.1 Cryptographic key generation

FCS_CKM.1.1 The TSF shall generate cryptographic keys in accordance with a specified
cryptographic key generation algorithm see table below and specified cryptographic key
sizes see table below that meet the following: see table below:

Cryptographic key generation
algorithm

Cryptographic key size List of standards

TDES 112 bits or 168 bits FIPS PUB 46-3 (ANSI X3.92)
[R16], FIPS PUB 81 [R17]

ECKeyP from 160 to 521 bits IEEE Std 1363a-2004 [R27]

RSA from 512 to 2048 bits with a step of
256-bits

ANSI X9.31 [R15]

AES from 128 to 256 bits with a step of 64
bits

FIPS PUB 197 [R25]

GP Keys - TDES (ECB) 112 bits GP 2.3

GP Keys – AES (ECB) 128, 192, 256 bits GP 2.3

GP Keys – AES (ECB) 128 bits GP 2.3

Application Note:

 The keys can be generated and diversified in accordance with [R6] specification in
classes KeyPair (at least Session key generation) and RandomData.

 This component shall be instantiated according to the version of the Java Card API
applying to the security target and the implemented algorithms [R6].

 This component shall be instantiated according to the version of the Global Platform GP
2.3 [R12] and [R13].

FCS_CKM.4 Cryptographic key destruction

FCS_CKM.4.1 The TSF shall destroy cryptographic keys in accordance with a specified
cryptographic key destruction method the keys are reset with the method clearKey()
that meets the following: "Java Card API" specification [R6]. The keys used in class
ISOSecureMessaging (Package "com.oberthurcs.javacard.utilSM") [R35] are
classes Key that meets the following: "Java Card API" specification [R6]. The
methods 'reset' and 'setKeyFormat' call the method key.clearKey() for clearing
the value of each key.

Application Note:

The keys are reset as specified in [R6] Key class, with the method clearKey(). Any access to a
cleared key for ciphering or signing shall throw an exception.

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 71/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

FCS_COP.1 Cryptographic operation

FCS_COP.1.1 The TSF shall perform see table below in accordance with a specified
cryptographic algorithm see table below and cryptographic key sizes see table below
that meet the following: see table below:

Cryptographic operation Cryptographic
algorithm

TOE
supported

size

“Standardized”
size

List of standards

signature, signature's verification,
encryption and decryption

DES – TDES with
Modes CBC, ECB,
and CMAC

56, 112 or
168 bits

TDES 168 FIPS PUB 46-3
(ANSI X3.92)
[R16], FIPS PUB
81 [R17],
ISO/IEC
9797(1999)
[R21], Data
integrity
mechanism
[R17]

signature, signature's verification,
encryption and decryption

AES with Modes
CBC, ECB, and
CMAC

from 128 to
256 bits
with a step
of 64 bits

greater than 128
bits

FIPS PUB 197
[R25], SP800-
38B (CMAC)

signature, signature's verification,
encryption and decryption

RSA CRT, private
keys. RSA SFM
(Straightforward)
public and private
keys.

from 1024
to 2048 bits
with a step
of 256-bits

2048 bits ANSI X9.31
[R15], ISO/IEC
9796-1 [R20],
PKCS#1[R23]

signature HMAC 64 bits up
to 1016 bits
Based on
SHA-256,
SHA-384
and SHA-
512

SHA-2 with key
size > 128 bits

FIPS 198 The
Keyed-Hash
Message
Authentication
Code (HMAC)

Hash functions SHA-1, SHA-224,
SHA-256, SHA-384
and SHA-512

SHA-1,
SHA-224,
SHA-256,
SHA-384
and SHA-
512

SHA-224, SHA-
256, SHA-384
and SHA-512

Secure Hash
Standard, FIPS
PUB 180-3 [R18]

signature, signature's verification ECDSA 160, 192,
256, 384,
512 and
521 bits

Greater than 200
bits

ANSI X9.62
[R10]

Key agreement ECDH 160 to 521
bits

Greater than 200
bits

BSI TR 03111,
IEEE Std 1363a-
2004 [R27]

Checksum 16-bit using the
hardware co-
processor

16 bits

ISO3309

Checksum 32-bit in software
implementation

32 bits

ISO3309

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 72/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

Cryptographic operation Cryptographic
algorithm

TOE
supported

size

“Standardized”
size

List of standards

SAC dedicated APIs from
com.oberthurcs.javacard.sac.sac

AES TDES ECDH 128 up to
256 bits
128 bits
160 to 521
bits

greater than 128
bits TDES 168
bits Greater than
200 bits

Java Package tools for applets
"com.oberthurcs.javacard.utilSM"

TDES AES 112 or 168
bits 128 up
to 256 bits

TDES 168
Greater than 128
bits

Application Note:

 The TOE shall provide a subset of cryptographic operations defined in [R6] (see
javacardx.crypto.Cipher and javacardx.security packages).

 This component shall be instantiated according to the version of the Java Card API
applicable to the security target and the implemented algorithms ([R6]).

FCS_RNG.1 Random Number Generation

FCS_RNG.1.1 The TSF shall provide a deterministic hybrid random number generator that
implements CTR_DRBG as defined in NIST SP800-90.

FCS_RNG.1.2 The TSF shall provide random numbers that meet the average Shannon
entropy per internal random bit exceeds 0.994.

Application Note:

FIPS statistical tests conclude to a 0.994 entropy.

FDP_RIP.1/ABORT Subset residual information protection

FDP_RIP.1.1/ABORT The TSF shall ensure that any previous information content of a
resource is made unavailable upon the deallocation of the resource from the following
objects: any reference to an object instance created during an aborted
transaction.

Application Note:

The events that provoke the de-allocation of a transient object are described in [R7], §5.1.

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 73/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

FDP_RIP.1/APDU Subset residual information protection

FDP_RIP.1.1/APDU The TSF shall ensure that any previous information content of a
resource is made unavailable upon the allocation of the resource to the following
objects: the APDU buffer.

FDP_RIP.1/GlobalArray Subset residual information protection

FDP_RIP.1.1/GlobalArray [Refined] The TSF shall ensure that any previous information
content of a resource is made unavailable upon deallocation of the resource from the
applet as a result of returning from the process method to the following objects: a user
Global Array.

Application Note:

An array resource is allocated when a call to the API method JCSystem.makeGlobalArray is
performed. The Global Array is created as a transient JCRE Entry Point Object ensuring that
reference to it cannot be retained by any application. On return from the method which called
JCSystem.makeGlobalArray, the array is no longer available to any applet and is deleted and
the memory in use by the array is cleared and reclaimed in the next object deletion cycle.

FDP_RIP.1/bArray Subset residual information protection

FDP_RIP.1.1/bArray The TSF shall ensure that any previous information content of a
resource is made unavailable upon the deallocation of the resource from the following
objects: the bArray object.

Application Note:

A resource is allocated to the bArray object when a call to an applet's install() method is
performed. There is no conflict with FDP_ROL.1 here because of the bounds on the rollback
mechanism (FDP_ROL.1.2/FIREWALL): the scope of the rollback does not extend outside the
execution of the install() method, and the de-allocation occurs precisely right after the return
of it.

FDP_RIP.1/KEYS Subset residual information protection

FDP_RIP.1.1/KEYS The TSF shall ensure that any previous information content of a
resource is made unavailable upon the deallocation of the resource from the following
objects: the cryptographic buffer (D.CRYPTO).

Application Note:

The javacard.security & javacardx.crypto packages do provide secure interfaces to the
cryptographic buffer in a transparent way. See javacard.security.KeyBuilder and Key interface
of [R6].

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 74/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

FDP_RIP.1/TRANSIENT Subset residual information protection

FDP_RIP.1.1/TRANSIENT The TSF shall ensure that any previous information content of a
resource is made unavailable upon the deallocation of the resource from the following
objects: any transient object.

Application Note:

 The events that provoke the de-allocation of any transient object are described in [R7],
§5.1.

 The clearing of CLEAR_ON_DESELECT objects is not necessarily performed when the
owner of the objects is deselected. In the presence of multiselectable applet instances,
CLEAR_ON_DESELECT memory segments may be attached to applets that are active in
different logical channels. Multiselectable applet instances within a same package must
share the transient memory segment if they are concurrently active ([R7], §4.2.

FDP_ROL.1/FIREWALL Basic rollback

FDP_ROL.1.1/FIREWALL The TSF shall enforce the FIREWALL access control SFP and
the JCVM information flow control SFP to permit the rollback of the operations
OP.JAVA and OP.CREATE on the object O.JAVAOBJECT.

FDP_ROL.1.2/FIREWALL The TSF shall permit operations to be rolled back within the
scope of a select(), deselect(), process(), install() or uninstall() call,
notwithstanding the restrictions given in [R7], §7.7, within the bounds of the
Commit Capacity ([R7], §7.8), and those described in [R6].

Application Note:

Transactions are a service offered by the APIs to applets. It is also used by some APIs to
guarantee the atomicity of some operation. This mechanism is either implemented in Java
Card platform or relies on the transaction mechanism offered by the underlying platform. Some
operations of the API are not conditionally updated, as documented in [R6] (see for instance,
PIN-blocking, PIN-checking, update of Transient objects).

7.1.1.3 Card Security Management

FAU_ARP.1 Security alarms

FAU_ARP.1.1 The TSF shall take one of the following actions:

o throw an exception,

o lock the card session,

o reinitialize the Java Card System and its data,

o response with error code to S.CAD

, upon detection of a potential security violation.

Refinement:

The "potential security violation" stands for one of the following events:

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 75/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

 CAP file inconsistency,

 typing error in the operands of a bytecode,

 applet life cycle inconsistency,

 card tearing (unexpected removal of the Card out of the CAD) and power failure,

 abort of a transaction in an unexpected context, (see abortTransaction(), [R6] and R[7],
§7.6.2)

 violation of the Firewall or JCVM SFPs,

 unavailability of resources,

 array overflow

FDP_SDI.2/DATA Stored data integrity monitoring and action

FDP_SDI.2.1/DATA The TSF shall monitor user data stored in containers controlled by the
TSF for integrity errors on all objects, based on the following attributes:
integrityControlledData.

FDP_SDI.2.2/DATA Upon detection of a data integrity error, the TSF shall increase
counter of the Killcard file. If the maximum is reached the killcard is launched.

Application Note:

The following data persistently stored by TOE have the user data attribute
"integrityControlledData ":

 PINs (i.e. objects instance of class OwnerPin or subclass of interface PIN)

 Keys (i.e. objects instance of classes implemented the interface Key)

 SecureStores (i.e. objects instance of class SecureStore)

 Packages Java Card

 Patches

FPR_UNO.1 Unobservability

FPR_UNO.1.1 [Editorially Refined] The TSF shall ensure that any user is unable to
observe the operation Cardholder authentication on D.PIN by no user and no
subject.

Application Note:

The non-observability of operations on sensitive information such as keys appears as
impossible to circumvent in the smart card world. The precise list of operations and objects is
left unspecified, but should at least concern secret keys and PIN values when they exist on
the card, as well as the cryptographic operations and comparisons performed on them.

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 76/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

FPT_FLS.1 Failure with preservation of secure state

FPT_FLS.1.1 The TSF shall preserve a secure state when the following types of failures occur:
those associated to the potential security violations described in FAU_ARP.1.

Application Note:

The Java Card RE Context is the Current context when the Java Card VM begins running after
a card reset ([R7], §6.2.3) or after a proximity card (PICC) activation sequence ([R7]).
Behaviour of the TOE on power loss and reset is described in [R7], §3.6 and §7.1. Behaviour
of the TOE on RF signal loss is described in [R7], §3.6.1.

FPT_TDC.1 Inter-TSF basic TSF data consistency

FPT_TDC.1.1 The TSF shall provide the capability to consistently interpret the CAP files,
the bytecode and its data arguments, when shared between the TSF and another
trusted IT product.

FPT_TDC.1.2 The TSF shall use

o the rules defined in [R8] specification,

o the API tokens defined in the export files of reference implementation

when interpreting the TSF data from another trusted IT product.

Application Note:

Concerning the interpretation of data between the TOE and the underlying Java Card platform,
it is assumed that the TOE is developed consistently with the SCP functions, including memory
management, I/O functions and cryptographic functions.

7.1.1.4 AID Management

FIA_ATD.1/AID User attribute definition

FIA_ATD.1.1/AID The TSF shall maintain the following list of security attributes belonging
to individual users:

o Package AID,

o Applet's version number,

o Registered applet AID,

o Applet Selection Status.

Refinement:

"Individual users" stand for applets.

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 77/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

FIA_UID.2/AID User identification before any action

FIA_UID.2.1/AID The TSF shall require each user to be successfully identified before
allowing any other TSF-mediated actions on behalf of that user.

Application Note:

 By users here it must be understood the ones associated to the packages (or applets)
that act as subjects of policies. In the Java Card System, every action is always
performed by an identified user interpreted here as the currently selected applet or the
package that is the subject's owner. Means of identification are provided during the
loading procedure of the package and the registration of applet instances.

 The role Java Card RE defined in FMT_SMR.1 is attached to an IT security function rather
than to a "user" of the CC terminology. The Java Card RE does not "identify" itself to the
TOE, but it is part of it.

FIA_USB.1/AID User-subject binding

FIA_USB.1.1/AID The TSF shall associate the following user security attributes with subjects
acting on the behalf of that user: Package AID.

FIA_USB.1.2/AID The TSF shall enforce the following rules on the initial association of user
security attributes with subjects acting on the behalf of users: for each loaded package
is associated an unique Package AID.

FIA_USB.1.3/AID The TSF shall enforce the following rules governing changes to the user
security attributes associated with subjects acting on the behalf of users: The initially
assigned Package AID is unchangeable.

Application Note:

The user is the applet and the subject is the S.PACKAGE. The subject security attribute
"Context" shall hold the user security attribute "Package AID".

FMT_MTD.1/JCRE Management of TSF data

FMT_MTD.1.1/JCRE The TSF shall restrict the ability to modify the list of registered
applets' AIDs to the JCRE.

Application Note:

 The installer and the Java Card RE manage other TSF data such as the applet life cycle
or CAP files, but this management is implementation specific. Objects in the Java
programming language may also try to query AIDs of installed applets through the
lookupAID(...) API method.

 The installer, applet deletion manager or even the card manager may be granted the
right to modify the list of registered applets' AIDs in specific implementations (possibly
needed for installation and deletion; see #.DELETION and #.INSTALL).

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 78/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

FMT_MTD.3/JCRE Secure TSF data

FMT_MTD.3.1/JCRE The TSF shall ensure that only secure values are accepted for the
registered applets' AIDs.

7.1.2 InstG Security Functional Requirements

This group consists of the SFRs related to the installation of the applets, which addresses
security aspects outside the runtime. The installation of applets is a critical phase, which lies
partially out of the Boundary of the firewall, and therefore requires specific treatment. In this
ST, loading a package or installing an applet modeled as importation of user data (that is, user
application's data) with its security attributes (such as the parameters of the applet used in
the firewall rules).

FDP_ITC.2/Installer Import of user data with security attributes

FDP_ITC.2.1/Installer The TSF shall enforce the PACKAGE LOADING information flow
control SFP when importing user data, controlled under the SFP, from outside of the TOE.

FDP_ITC.2.2/Installer The TSF shall use the security attributes associated with the
imported user data.

FDP_ITC.2.3/Installer The TSF shall ensure that the protocol used provides for the
unambiguous association between the security attributes and the user data received.

FDP_ITC.2.4/Installer The TSF shall ensure that interpretation of the security attributes of
the imported user data is as intended by the source of the user data.

FDP_ITC.2.5/Installer The TSF shall enforce the following rules when importing user data
controlled under the SFP from outside the TOE: Package loading is allowed only if, for
each dependent package, its AID attribute is equal to a resident package AID
attribute, the major (minor) Version attribute associated to the dependent
package is lesser than or equal to the major (minor) Version attribute associated
to the resident package ([R8], §4.5.2).

Application Note:

FDP_ITC.2.1/Installer:

 The most common importation of user data is package loading and applet installation on
the behalf of the installer. Security attributes consist of the shareable flag of the class
component, AID and version numbers of the package, maximal operand stack size and
number of local variables for each method, and export and import components
(accessibility).

FDP_ITC.2.3/Installer:

 The format of the CAP file is precisely defined in [R8] specifications; it contains the user
data (like applet's code and data) and the security attributes altogether. Therefore there
is no association to be carried out elsewhere.

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 79/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

FDP_ITC.2.4/Installer:

 Each package contains a package Version attribute, which is a pair of major and minor
version numbers ([R8], §4.5). With the AID, it describes the package defined in the CAP
file. When an export file is used during preparation of a CAP file, the versions numbers
and AIDs indicated in the export file are recorded in the CAP files ([R8], §4.5.2): the
dependent packages Versions and AIDs attributes allow the retrieval of these
identifications. Implementation-dependent checks may occur on a case-by-case basis to
indicate that package files are binary compatible. However, package files do have
"package Version Numbers" ([R8]) used to indicate binary compatibility or incompatibility
between successive implementations of a package, which obviously directly concern this
requirement.

FDP_ITC.2.5/Installer:

 A package may depend on (import or use data from) other packages already installed.
This dependency is explicitly stated in the loaded package in the form of a list of package
AIDs.

 The intent of this rule is to ensure the binary compatibility of the package with those
already on the card ([R8], §4.4).

 The installation (the invocation of an applet's install method by the installer) is
implementation dependent ([R7], §11.2).

 Other rules governing the installation of an applet, that is, its registration to make it
SELECTable by giving it a unique AID, are also implementation dependent (see, for
example, [R7], §11).

FMT_SMR.1/Installer Security roles

FMT_SMR.1.1/Installer The TSF shall maintain the roles S.INSTALLER.

FMT_SMR.1.2/Installer The TSF shall be able to associate users with roles.

FPT_FLS.1/Installer Failure with preservation of secure state

FPT_FLS.1.1/Installer The TSF shall preserve a secure state when the following types of
failures occur: the installer fails to load/install a package/applet as described in
[R7] §11.1.4.

Application Note:

The TOE may provide additional feedback information to the card manager in case of potential
security violations (see FAU_ARP.1).

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 80/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

FPT_RCV.3/Installer Automated recovery without undue loss

FPT_RCV.3.1/Installer When automated recovery from none is not possible, the TSF shall
enter a maintenance mode where the ability to return to a secure state is provided.

Refinement:

There is no maintenance mode on the TOE.

FPT_RCV.3.2/Installer For a failure during load/installation of a package/applet
and deletion of a package/applet/object, the TSF shall ensure the return of the TOE
to a secure state using automated procedures.

FPT_RCV.3.3/Installer The functions provided by the TSF to recover from failure or service
discontinuity shall ensure that the secure initial state is restored without exceeding 0% for
loss of TSF data or objects under the control of the TSF.

FPT_RCV.3.4/Installer The TSF shall provide the capability to determine the objects that
were or were not capable of being recovered.

Application Note:

FPT_RCV.3.1/Installer:

 This element is not within the scope of the Java Card specification, which only mandates
the behaviour of the Java Card System in good working order. Further details on the
"maintenance mode" shall be provided in specific implementations. The following is an
excerpt from [CC2], p296: In this maintenance mode normal operation might be
impossible or severely restricted, as otherwise insecure situations might occur. Typically,
only authorised users should be allowed access to this mode but the real details of who
can access this mode is a function of FMT: Security management. If FMT: Security
management does not put any controls on who can access this mode, then it may be
acceptable to allow any user to restore the system if the TOE enters such a state.
However, in practice, this is probably not desirable as the user restoring the system has
an opportunity to configure the TOE in such a way as to violate the SFRs.

FPT_RCV.3.2/Installer:

 Should the installer fail during loading/installation of a package/applet, it has to revert
to a "consistent and secure state". The Java Card RE has some clean up duties as well;
see [R7], §11.1.5 for possible scenarios. Precise behaviour is left to implementers. This
component shall include among the listed failures the deletion of a package/applet. See
([R7], 11.3.4) for possible scenarios. Precise behaviour is left to implementers.

 Other events such as the unexpected tearing of the card, power loss, and so on, are
partially handled by the underlying hardware platform (see [R24]) and, from the TOE's
side, by events "that clear transient objects" and transactional features. See
FPT_FLS.1.1, FDP_RIP.1/TRANSIENT, FDP_RIP.1/ABORT and FDP_ROL.1/FIREWALL.

FPT_RCV.3.3/Installer:

 The quantification is implementation dependent, but some facts can be recalled here.
First, the SCP ensures the atomicity of updates for fields and objects, and a power-failure
during a transaction or the normal runtime does not create the loss of otherwise-
permanent data, in the sense that memory on a smart card is essentially persistent with

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 81/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

this respect (Flash). Data stored on the RAM and subject to such failure is intended to
have a limited lifetime anyway (runtime data on the stack, transient objects' contents).
According to this, the loss of data within the TSF scope should be limited to the same
restrictions of the transaction mechanism.

7.1.3 ADELG Security Functional Requirements

This group consists of the SFRs related to the deletion of applets and/or packages, enforcing
the applet deletion manager (ADEL) policy on security aspects outside the runtime. Deletion
is a critical operation and therefore requires specific treatment. This policy is better thought
as a frame to be filled by ST implementers.

FDP_ACC.2/ADEL Complete access control

FDP_ACC.2.1/ADEL The TSF shall enforce the ADEL access control SFP on S.ADEL,
S.JCRE, S.JCVM, O.JAVAOBJECT, O.APPLET and O.CODE_PKG and all operations
among subjects and objects covered by the SFP.

Refinement:

The operations involved in the policy are:

o OP.DELETE_APPLET,

o OP.DELETE_PCKG,

o OP.DELETE_PCKG_APPLET.

FDP_ACC.2.2/ADEL The TSF shall ensure that all operations between any subject controlled
by the TSF and any object controlled by the TSF are covered by an access control SFP.

FDP_ACF.1/ADEL Security attribute based access control

FDP_ACF.1.1/ADEL The TSF shall enforce the ADEL access control SFP to objects based
on the following:

Subject/Object Attributes

S.JCVM Active Applets

S.JCRE Selected Applet Context, Registered Applets, Resident Packages

O.CODE_PKG Package AID, Dependent Package AID, Static References

O.APPLET Applet Selection Status

O.JAVAOBJECT Owner, Remote

FDP_ACF.1.2/ADEL The TSF shall enforce the following rules to determine if an operation
among controlled subjects and controlled objects is allowed: In the context of this
policy, an object O is reachable if and only if one of the following conditions
hold:

o (1) the owner of O is a registered applet instance A (O is reachable from
A),

o (2) a static field of a resident package P contains a reference to O (O is
reachable from P),

o (3) there exists a valid remote reference to O (O is remote reachable),

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 82/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

o (4) there exists an object O' that is reachable according to either (1) or
(2) or (3) above and O' contains a reference to O (the reachability status
of O is that of O').

The following access control rules determine when an operation among
controlled subjects and objects is allowed by the policy:

o R.JAVA.14 ([R7], §11.3.4.2, Applet Instance Deletion): S.ADEL may
perform OP.DELETE_APPLET upon an O.APPLET only if,

 (1) S.ADEL is currently selected,

 (2) there is no instance in the context of O.APPLET that is active in any
logical channel and

 (3) there is no O.JAVAOBJECT owned by O.APPLET such that either
O.JAVAOBJECT is reachable from an applet instance distinct from
O.APPLET, or O.JAVAOBJECT is reachable from a package P, or ([R7],
§8.5) O.JAVAOBJECT is remote reachable.

o R.JAVA.15 ([R7], §11.3.4.2.1, Multiple Applet Instance Deletion): S.ADEL
may perform OP.DELETE_APPLET upon several O.APPLET only if,

 (1) S.ADEL is currently selected,

 (2) there is no instance of any of the O.APPLET being deleted that is
active in any logical channel and

 (3) there is no O.JAVAOBJECT owned by any of the O.APPLET being
deleted such that either O.JAVAOBJECT is reachable from an applet
instance distinct from any of those O.APPLET, or O.JAVAOBJECT is
reachable from a package P, or ([R7], §8.5) O.JAVAOBJECT is remote
reachable.

o R.JAVA.16 ([R7], §11.3.4.2, Applet/Library Package Deletion): S.ADEL
may perform OP.DELETE_PCKG upon an O.CODE_PKG only if,

 (1) S.ADEL is currently selected,

 (2) no reachable O.JAVAOBJECT, from a package distinct from
O.CODE_PKG that is an instance of a class that belongs to
O.CODE_PKG, exists on the card and

 (3) there is no resident package on the card that depends on
O.CODE_PKG.

o R.JAVA.17 ([R7], §11.3.4.4, Applet Package and Contained Instances
Deletion): S.ADEL may perform OP.DELETE_PCKG_APPLET upon an
O.CODE_PKG only if,

 (1) S.ADEL is currently selected,

 (2) no reachable O.JAVAOBJECT, from a package distinct from
O.CODE_PKG, which is an instance of a class that belongs to
O.CODE_PKG exists on the card,

 (3) there is no package loaded on the card that depends on
O.CODE_PKG, and

 (4) for every O.APPLET of those being deleted it holds that: (i) there is
no instance in the context of O.APPLET that is active in any logical
channel and (ii) there is no O.JAVAOBJECT owned by O.APPLET such
that either O.JAVAOBJECT is reachable from an applet instance not
being deleted, or O.JAVAOBJECT is reachable from a package not being
deleted, or ([R7], §8.5) O.JAVAOBJECT is remote reachable.

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 83/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

FDP_ACF.1.3/ADEL The TSF shall explicitly authorise access of subjects to objects based on
the following additional rules: none.

FDP_ACF.1.4/ADEL The TSF shall explicitly deny access of subjects to objects based on the
following additional rules: any subject but S.ADEL to O.CODE_PKG or O.APPLET for
the purpose of deleting them from the card.

Application Note:

FDP_ACF.1.2/ADEL:

 This policy introduces the notion of reachability, which provides a general means to
describe objects that are referenced from a certain applet instance or package.

 S.ADEL calls the "uninstall" method of the applet instance to be deleted, if implemented
by the applet, to inform it of the deletion request. The order in which these calls and the
dependencies checks are performed are out of the scope of this Security Target.

FDP_RIP.1/ADEL Subset residual information protection

FDP_RIP.1.1/ADEL The TSF shall ensure that any previous information content of a
resource is made unavailable upon the deallocation of the resource from the following
objects: applet instances and/or packages when one of the deletion operations
in FDP_ACC.2.1/ADEL is performed on them.

Application Note:

Deleted freed resources (both code and data) may be reused, depending on the way they
were deleted (logically or physically). Requirements on de-allocation during applet/package
deletion are described in [R7], §11.3.4.2, §11.3.4.3 and §11.3.4.4.

FMT_MSA.1/ADEL Management of security attributes

FMT_MSA.1.1/ADEL The TSF shall enforce the ADEL access control SFP to restrict the
ability to modify the security attributes Registered Applets and Resident Packages
to the Java Card RE.

FMT_MSA.3/ADEL Static attribute initialisation

FMT_MSA.3.1/ADEL The TSF shall enforce the ADEL access control SFP to provide
restrictive default values for security attributes that are used to enforce the SFP.

FMT_MSA.3.2/ADEL The TSF shall allow the following role(s): none to specify alternative
initial values to override the default values when an object or information is created.

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 84/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

FMT_SMF.1/ADEL Specification of Management Functions

FMT_SMF.1.1/ADEL The TSF shall be capable of performing the following management
functions: modify the list of registered applets' AIDs and the Resident Packages.

Application Note:

The modification of the Active Applets security attribute should be performed in accordance
with the rules given in [R7], §4.

FMT_SMR.1/ADEL Security roles

FMT_SMR.1.1/ADEL The TSF shall maintain the roles applet deletion manager.

FMT_SMR.1.2/ADEL The TSF shall be able to associate users with roles.

FPT_FLS.1/ADEL Failure with preservation of secure state

FPT_FLS.1.1/ADEL The TSF shall preserve a secure state when the following types of
failures occur: the applet deletion manager fails to delete a package/applet as
described in [R7], §11.3.4.

Application Note:

 The TOE may provide additional feedback information to the card manager in case of a
potential security violation (see FAU_ARP.1).

 The Package/applet instance deletion must be atomic. The "secure state" referred to in
the requirement must comply with Java Card specification ([R7], §11.3.4.)

7.1.4 ODELG Security Functional Requirements

The following requirements concern the object deletion mechanism. This mechanism is
triggered by the applet that owns the deleted objects by invoking a specific API method.

FDP_RIP.1/ODEL Subset residual information protection

FDP_RIP.1.1/ODEL The TSF shall ensure that any previous information content of a
resource is made unavailable upon the deallocation of the resource from the following
objects: the objects owned by the context of an applet instance which triggered
the execution of the method
javacard.framework.JCSystem.requestObjectDeletion().

Application Note:

 Freed data resources resulting from the invocation of the method
javacard.framework.JCSystem.requestObjectDeletion() may be reused. Requirements
on de-allocation after the invocation of the method are described in [R6].

 There is no conflict with FDP_ROL.1 here because of the bounds on the rollback
mechanism: the execution of requestObjectDeletion() is not in the scope of the rollback
because it must be performed in between APDU command processing, and therefore no
transaction can be in progress.

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 85/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

FPT_FLS.1/ODEL Failure with preservation of secure state

FPT_FLS.1.1/ODEL The TSF shall preserve a secure state when the following types of
failures occur: the object deletion functions fail to delete all the unreferenced
objects owned by the applet that requested the execution of the method.

Application Note:

The TOE may provide additional feedback information to the card manager in case of potential
security violation (see FAU_ARP.1).

7.1.5 CarG Security Functional Requirements

This group includes requirements for preventing the installation of packages that has not been
bytecode verified, or that has been modified after bytecode verification.

7.1.5.1 Miscellaneous

FCO_NRO.2/CM Enforced proof of origin

FCO_NRO.2.1/CM The TSF shall enforce the generation of evidence of origin for transmitted
application packages at all times.

FCO_NRO.2.2/CM The TSF shall be able to relate the identity of the originator of the
information, and the application package of the information to which the evidence
applies.

FCO_NRO.2.3/CM The TSF shall provide a capability to verify the evidence of origin of
information to recipient given immediate verification.

Application Note:

FCO_NRO.2.1/CM:

 Upon reception of a new application package for installation, the card manager shall first
check that it actually comes from the verification authority and represented by the
subject S.BCV. The verification authority is indeed the entity responsible for bytecode
verification.

FCO_NRO.2.3/CM:

 The exact limitations on the evidence of origin are implementation dependent. In most
of the implementations, the card manager performs an immediate verification of the
origin of the package using an electronic signature mechanism, and no evidence is kept
on the card for future verifications.

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 86/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

FDP_IFC.2/CM Complete information flow control

FDP_IFC.2.1/CM The TSF shall enforce the PACKAGE LOADING information flow
control SFP on S.INSTALLER, S.BCV, S.CAD and I.APDU and all operations that cause
that information to flow to and from subjects covered by the SFP.

FDP_IFC.2.2/CM The TSF shall ensure that all operations that cause any information in the
TOE to flow to and from any subject in the TOE are covered by an information flow control
SFP.

Application Note:

 The subjects covered by this policy are those involved in the loading of an application
package by the card through a potentially unsafe communication channel.

 The operations that make information to flow between the subjects are those enabling
to send a message through and to receive a message from the communication channel
linking the card to the outside world. It is assumed that any message sent through the
channel as clear text can be read by an attacker. Moreover, an attacker may capture any
message sent through the communication channel and send its own messages to the
other subjects.

 The information controlled by the policy is the APDUs exchanged by the subjects through
the communication channel linking the card and the CAD. Each of those messages
contain part of an application package that is required to be loaded on the card, as well
as any control information used by the subjects in the communication protocol.

FDP_IFF.1/CM Simple security attributes

FDP_IFF.1.1/CM The TSF shall enforce the PACKAGE LOADING information flow
control SFP based on the following types of subject and information security attributes:
LoadFile, Dap.

FDP_IFF.1.2/CM The TSF shall permit an information flow between a controlled subject and
controlled information via a controlled operation if the following rules hold: the rules
describing the communication protocol used by the CAD and the card for
transmitting a new package, see chapter 9.3.9 [R9].

FDP_IFF.1.3/CM The TSF shall enforce the none.

FDP_IFF.1.4/CM The TSF shall explicitly authorise an information flow based on the
following rules: none.

FDP_IFF.1.5/CM The TSF shall explicitly deny an information flow based on the following
rules: the rules describing the communication protocol used by the CAD and the
card for transmitting a new package, see chapter 9.3.9 [R9].

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 87/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

Application Note:

FDP_IFF.1.1/CM:

 The security attributes used to enforce the PACKAGE LOADING SFP are implementation
dependent. More precisely, they depend on the communication protocol enforced
between the CAD and the card. For instance, some of the attributes that can be used
are: (1) the keys used by the subjects to encrypt/decrypt their messages; (2) the number
of pieces the application package has been split into in order to be sent to the card; (3)
the ordinal of each piece in the decomposition of the package, etc. See for example
Appendix D of [R12].

FDP_IFF.1.2/CM:

 The precise set of rules to be enforced by the function is implementation dependent.
The whole exchange of messages shall verify at least the following two rules: (1) the
subject S.INSTALLER shall accept a message only if it comes from the subject S.CAD;
(2) the subject S.INSTALLER shall accept an application package only if it has received
without modification and in the right order all the APDUs sent by the subject S.CAD.

FDP_UIT.1/CM Data exchange integrity

FDP_UIT.1.1/CM The TSF shall enforce the PACKAGE LOADING information flow
control SFP to receive user data in a manner protected from deletion, insertion,
replay and modification errors.

FDP_UIT.1.2/CM [Editorially Refined] The TSF shall be able to determine on receipt of
user data, whether modification, deletion, insertion and replay of some of the pieces
of the application sent by the CAD has occurred.

Application Note:

Modification errors should be understood as modification, substitution, unrecoverable ordering
change of data and any other integrity error that may cause the application package to be
installed on the card to be different from the one sent by the CAD.

FIA_UID.1/CM Timing of identification

FIA_UID.1.1/CM The TSF shall allow Execution of Card Manager on behalf of the user
to be performed before the user is identified.

FIA_UID.1.2/CM The TSF shall require each user to be successfully identified before
allowing any other TSF-mediated actions on behalf of that user.

Application Note:

The list of TSF-mediated actions is implementation-dependent, but package installation
requires the user to be identified. Here by user is meant the one(s) that in the Security Target
shall be associated to the role(s) defined in the component FMT_SMR.1/CM.

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 88/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

FMT_MSA.1/CM Management of security attributes

FMT_MSA.1.1/CM The TSF shall enforce the PACKAGE LOADING information flow
control SFP to restrict the ability to modify the security attributes
AS.KEYSET_VERSION, AS.KEYSET_VALUE, Default SELECTED Privileges,
AS.CMLIFECYC to R.Card_Manager.

FMT_MSA.3/CM Static attribute initialisation

FMT_MSA.3.1/CM The TSF shall enforce the PACKAGE LOADING information flow
control SFP to provide restrictive default values for security attributes that are used to
enforce the SFP.

FMT_MSA.3.2/CM The TSF shall allow the Card manager to specify alternative initial
values to override the default values when an object or information is created.

FMT_SMF.1/CM Specification of Management Functions

FMT_SMF.1.1/CM The TSF shall be capable of performing the following management
functions: Modify the following security attributes: AS.KEYSET_VERSION,
AS.KEYSET_VALUE, Default SELECTED Privileges, AS.CMLIFECYC.

FMT_SMR.1/CM Security roles

FMT_SMR.1.1/CM The TSF shall maintain the roles Card manager.

FMT_SMR.1.2/CM The TSF shall be able to associate users with roles.

FTP_ITC.1/CM Inter-TSF trusted channel

FTP_ITC.1.1/CM The TSF shall provide a communication channel between itself and another
trusted IT product that is logically distinct from other communication channels and provides
assured identification of its end points and protection of the channel data from modification
or disclosure.

FTP_ITC.1.2/CM [Editorially Refined] The TSF shall permit the CAD placed in the card
issuer secured environment to initiate communication via the trusted channel.

FTP_ITC.1.3/CM The TSF shall initiate communication via the trusted channel for
loading/installing a new application package on the card.

Application Note:

New packages can be installed on the card only on demand of the card issuer.

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 89/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

7.1.5.2 Additional Security Functional Requirements for CM

FPT_TST.1 TSF testing

FPT_TST.1.1 The TSF shall run a suite of self tests during initial start-up to demonstrate
the correct operation of the TSF.

FPT_TST.1.2 The TSF shall provide authorised users with the capability to verify the integrity
of TSF data.

FPT_TST.1.3 The TSF shall provide authorised users with the capability to verify the integrity
of stored TSF executable code.

Application Note:

Namely, “stored TSF executable code” encompasses the patch and java packages. During
startup, the TOE checks the integrity of the patch/java packages. To do so, the related bits
should have been set accordingly at the pre-personalisation phase, c.f. AGD_PRE [R33] section
Lock POST (DO ‘DF41’).

Other self-tests are described in AGD_PRE [R33] section Lock POST (DO ‘DF41’). Namely,
According to the protocol used Known Answer Test (or POST for Power On Self Tests) checks
SHA, RSA, ECDSA either in startup or during 1st use. Those latter tests are configurable.

RNG, CRC, DES and AES set of self-tests can be performed in startup, regarding the
configuration.

FCO_NRO.2/CM_DAP Enforced proof of origin

FCO_NRO.2.1/CM_DAP The TSF shall enforce the generation of evidence of origin for
transmitted Loadfile at all times.

FCO_NRO.2.2/CM_DAP The TSF shall be able to relate the AS.KEYSET_VALUE of the
originator of the information, and the CAP file components of the information to which
the evidence applies.

FCO_NRO.2.3/CM_DAP The TSF shall provide a capability to verify the evidence of origin
of information to recipient given during CAP file loading.

FIA_AFL.1/CM Authentication failure handling

FIA_AFL.1.1/CM The TSF shall detect when 1 unsuccessful authentication attempts occur
related to U.Card_Issuer authentication.

FIA_AFL.1.2/CM When the defined number of unsuccessful authentication attempts has
been met, the TSF shall slow down exponentially the next authentication.

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 90/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

FIA_UAU.1/CM Timing of authentication

FIA_UAU.1.1/CM The TSF shall allow Get Data, Initialize Update, Select on behalf of
the user to be performed before the user is authenticated.

FIA_UAU.1.2/CM The TSF shall require each user to be successfully authenticated before
allowing any other TSF-mediated actions on behalf of that user.

FIA_UAU.4/CardIssuer Single-use authentication mechanisms

FIA_UAU.4.1/CardIssuer The TSF shall prevent reuse of authentication data related to
Authentication Mechanism based on Triple-DES and/or AES.

Application Note:

The authentication mechanism, used to open a secure channel communication with the card
issuer, use a challenge freshly and randomly generated by the TOE in order to prevent reuse
of a response generated by a terminal in a successful authentication attempt.

FIA_UAU.7/CardIssuer Protected authentication feedback

FIA_UAU.7.1/CardIssuer The TSF shall provide only the result of the authentication
(NOK), the key set version, Secure channel identifier and the card random and
the card cryptogram to the user while the authentication is in progress.

FPR_UNO.1/Key_CM Unobservability

FPR_UNO.1.1/Key_CM The TSF shall ensure that all subjects are unable to observe the
operation OP.IMPORT_KEY on Key by D.JCS_KEYS.

FPT_TDC.1/CM Inter-TSF basic TSF data consistency

FPT_TDC.1.1/CM The TSF shall provide the capability to consistently interpret
AS.KEYSET_VALUE when shared between the TSF and another trusted IT product.

FPT_TDC.1.2/CM The TSF shall use the rules defined in the GP [R9] section 11.8 when
interpreting the TSF data from another trusted IT product.

FMT_SMR.2/CM Restrictions on security roles

FMT_SMR.2.1/CM The TSF shall maintain the roles: see below.

FMT_SMR.2.2/CM The TSF shall be able to associate users with roles.

FMT_SMR.2.3/CM The TSF shall ensure that the conditions see details below are satisfied.

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 91/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

Roles Condition for this role

R.personaliser Successful authentication (Card Issuer) using a key set of the Card
Manager or Security Domain associates with CM life cycle phase
from OP_READY to SECURED

R.Card_Manager Successful authentication (of Card Issuer) using its key set, with
CM life cycle phase from OP_READY to SECURED

R.Security_Domain Successful authentication (of application provider) using its key set,
with CM life cycle phase different from locked

R.Use_API Successful identification (of Applet), with Applet life cycle phase
after SELECTABLE

R.Applet_privilege have the privilege to modify CM life cycle, ATR, and also Global Pin

FCS_COP.1/CM Cryptographic operation

FCS_COP.1.1/CM The TSF shall perform see table below in accordance with a specified
cryptographic algorithm see table below and cryptographic key sizes see table below
that meet the following:

Cryptographic operation Algorithm Key length Standard

TOE authentication key ISK/KMC SCP02 112 bits GP 2.3

TOE authentication key ISK/KMC SCP03 128/192/256 bits GP 2.3

SCP02 - signature, verification of signature,
encryption and decryption (KEK (key
encryption key) for sensitive objects such as
PIN, keys … is mandatory)

TDES 112 bits SCP02 – GP
2.3

SCP03 - signature, verification of signature,
encryption and decryption

AES 128/192/256 bits SCP03 – GP
2.3

7.1.5.3 Additional Security Functional Requirements for Resident application

FDP_ACC.2/PP Complete access control

FDP_ACC.2.1/PP [Editorially Refined] The TSF shall enforce the Access Control on see
below and all operations among subjects and objects covered by the SFP.

Access Control Subject/Object

Administration Access Control S.Resident application, S.TOE,
R.Prepersonaliser and R.Personaliser /
for all objects

Patch Loading Access Control S.TOE and U.Card_Issuer / for all objects

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 92/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

FDP_ACC.2.2/PP The TSF shall ensure that all operations between any subject controlled
by the TSF and any object controlled by the TSF are covered by an access control SFP.

FDP_ACF.1/PP Security attribute based access control

FDP_ACF.1.1/PP The TSF shall enforce the Administration access control and Patch
loading access control to objects based on the following:

Subject Attribute

R.Prepersonaliser and R.Personaliser AS.AUTH_MSK_STATUS

AS.MSK_ KEY_VALUE
AS.MSK_ KEY_COUNTER

U.Card_Issuer AS.JSK_ KEY_VALUE

AS.JSK_ KEY_COUNTER

FDP_ACF.1.2/PP The TSF shall enforce the following rules to determine if an operation
among controlled subjects and controlled objects is allowed:

o R.Prepersonaliser, R.Personaliser and U.Card_Issuer are allowed to load
a patch if:

 correctly encrypted with the dedicated key

 the memory area to be modified is genuine.

FDP_ACF.1.3/PP The TSF shall explicitly authorise access of subjects to objects based on
the following additional rules: none.

FDP_ACF.1.4/PP The TSF shall explicitly deny access of subjects to objects based on the
following additional rules: none.

Application Note:

The dedicated key will be LSK in case of secure update and JSK in case of patch loading.
The patch loading before use phase is in mode 1 using JSK.
The patch loading in user phase is in mode 2 using a diversification of JSK for encryption and
computing an additional MAC of the patch.

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 93/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

FDP_UCT.1/PP Basic data exchange confidentiality

FDP_UCT.1.1/PP The TSF shall enforce the Administration access control and Patch
loading access control to receive user data in a manner protected from unauthorised
disclosure.

FDP_ITC.1/PP Import of user data without security attributes

FDP_ITC.1.1/PP The TSF shall enforce the Administration access control and Patch
loading access control when importing user data, controlled under the SFP, from outside
of the TOE.

FDP_ITC.1.2/PP The TSF shall ignore any security attributes associated with the user data
when imported from outside the TOE.

FDP_ITC.1.3/PP The TSF shall enforce the following rules when importing user data
controlled under the SFP from outside the TOE: none.

FIA_AFL.1/PP Authentication failure handling

FIA_AFL.1.1/PP The TSF shall detect when [selection] unsuccessful authentication
attempts occur related to [list of authentication events].

FIA_AFL.1.2/PP When the defined number of unsuccessful authentication attempts has
been met, the TSF shall [list of actions].

Selection List of Authentication Events List of Actions

3 R.Prepersonaliser, R.Personaliser
and U.Card_Issuer Authentication

Always return an error

FIA_UAU.1/PP Timing of authentication

FIA_UAU.1.1/PP The TSF shall allow INITIALIZE AUTHENTICATION PROCESS, GET
DATA, MANAGE CHANNEL, SELECT APPLET on behalf of the user to be performed
before the user is authenticated.

FIA_UAU.1.2/PP The TSF shall require each user to be successfully authenticated before
allowing any other TSF-mediated actions on behalf of that user.

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 94/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

FIA_UID.1/PP Timing of identification

FIA_UID.1.1/PP The TSF shall allow INITIALIZE AUTHENTICATION PROCESS, GET
DATA, MANAGE CHANNEL, and SELECT APPLET on behalf of the user to be performed
before the user is identified.

FIA_UID.1.2/PP The TSF shall require each user to be successfully identified before allowing
any other TSF-mediated actions on behalf of that user.

FMT_MSA.1/PP Management of security attributes

FMT_MSA.1.1/PP The TSF shall enforce the Administration access control to restrict the
ability to modify the security attributes AS.AUTH_MSK_STATUS, AS.MSK_
KEY_VALUE, AS.MSK_ KEY_COUNTER to R.Prepersonaliser.

FMT_SMF.1/PP Specification of Management Functions

FMT_SMF.1.1/PP The TSF shall be capable of performing the following management
functions: modify the MSK keys of the Card Manufacturer in Prepersonalisation
phase after a successful authentication with the MSK.

FIA_UAU.4/CardManu Single-use authentication mechanisms

FIA_UAU.4.1/CardManu The TSF shall prevent reuse of authentication data related to
Authentication Mechanism based on Triple-DES and/or AES.

FIA_UAU.7/CardManu Protected authentication feedback

FIA_UAU.7.1/CardManu The TSF shall provide only the result of the authentication
(NOK) and the random to the user while the authentication is in progress.

FMT_MOF.1/PP Management of security functions behaviour

FMT_MOF.1.1/PP [Editorially Refined] The TSF shall restrict the ability to see below the
functions see below to

Functions Role

Disable INITIALIZE AUTHENTICATION PROCESS,
EXTERNAL/MUTUAL AUTHENTICATE, INSTALL,
UPDATE SECURE, LOAD APPLET, GET DATA

R.Prepersonaliser

Modify the
behaviour of

Self-tests described in FPT_TST.1 R.Prepersonaliser

Application Note:

The second operation describes the product configuration regarding self tests, as described in
AGD_PRE [R33].

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 95/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

FMT_SMR.2/PP Restrictions on security roles

FMT_SMR.2.1/PP The TSF shall maintain the roles: R.Prepersonaliser, R.Personaliser
and U.Card_Issuer.

FMT_SMR.2.2/PP The TSF shall be able to associate users with roles.

FMT_SMR.2.3/PP The TSF shall ensure that the conditions see details below are satisfied.

Roles Condition for this role

R.Prepersonaliser Successful authentication (of Card Manufacturer) using MSK and card
still in prepersonalisation state, in phase 4-5.

R.Personaliser Successful authentication (of Personaliser) using ISK and card still in
personalisation state, in phase 6.

U.Card_Issuer Successful authentication (of Card_Issuer) using JSK and card in phase
7.

FMT_MSA.3/PP Static attribute initialisation

FMT_MSA.3.1/PP The TSF shall enforce the Administration access control and Patch
loading access control to provide restrictive default values for security attributes that
are used to enforce the SFP.

FMT_MSA.3.2/PP The TSF shall allow the following role(s):none to specify alternative
initial values to override the default values when an object or information is created.

FCS_COP.1/PP Cryptographic operation

FCS_COP.1.1/PP The TSF shall perform see table below in accordance with a specified
cryptographic algorithm see table below and cryptographic key sizes see table below
that meet the following:

Cryptographic
operation

Algorithm Key length Standard

Decryption (MSK) DES 112 bits FIPS-PUB 46-3 (ANSI X3.92) [R16],
FIPS PUB 81 [R17] or ISO/IEC 9797
[R21], Data integrity mechanism

Card Manufacturer
authentication (MSK)

DES 112 bits FIPS PUB 197 [R25]

Card Manufacturer
authentication (MSK)

AES 128, 192
and 256 bits

FIPS-PUB 46-3 (ANSI X3.92) [R16],
FIPS PUB 81 [R17] or ISO/IEC 9797
[R21], Data integrity mechanism

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 96/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

Cryptographic
operation

Algorithm Key length Standard

Decryption of locks
ciphered with LSK

AES 128 bits FIPS-PUB 46-3 (ANSI X3.92) [R16],
FIPS PUB 81 [R17] or ISO/IEC 9797
[R21]

Decryption of patch
ciphered with JSK

AES 128 bits FIPS-PUB 46-3 (ANSI X3.92) [R16],
FIPS PUB 81 [R17] or ISO/IEC 9797
[R21]

Decryption of patch
ciphered with deversified
JSK

AES mode
CBC and
MAC

128 bits FIPS-PUB 46-3 (ANSI X3.92) [R16],
FIPS PUB 81[R17] or ISO/IEC 9797
[R21], FIPS PUB 197 [R25] SP800-
38B (CMAC)

ISK MAC verification DES 112 bits FIPS PUB 197 [R25]

FCS_CKM.4/PP Cryptographic key destruction

FCS_CKM.4.1/PP The TSF shall destroy cryptographic keys in accordance with a specified
cryptographic key destruction method Key is set to NULL that meets the following: no.

FDP_UIT.1/PP Data exchange integrity

FDP_UIT.1.1/PP The TSF shall enforce the Administration access control and Patch
loading access control to receive user data in a manner protected from modification
errors.

FDP_UIT.1.2/PP [Editorially Refined] The TSF shall be able to determine on receipt of
user data, whether modification of some of the pieces of the application sent by
the TOE developer and Card Manufacturer has occurred.

Application Note:

Modification errors should be understood as modification, substitution, unrecoverable ordering
change of data and any other integrity error that may cause the patch to be installed on the
card to be different from the one sent by the TOE Developer. The ISK loading is performed by
the Card Manufacturer via the command PUT KEY, its integrity is ensured by a MAC, described
in FCS_COP.1/PP.

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 97/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

FCS_CKM.1/PP Cryptographic key generation

FCS_CKM.1.1/PP The TSF shall generate cryptographic keys in accordance with a specified
cryptographic key generation algorithm see table below and specified cryptographic key
sizes see table below that meet the following: see table below

Cryptographic key generation algorithm Cryptographic key
size

List of
standards

TOE’s MSK derived from the MSK loaded in phase
1, using SHA-256

16, 24 and 32 bytes None

JSK Derivation using AES 16 Bytes NIST SP-800

FAU_STG.2 Guarantees of audit data availability

FAU_STG.2.1 The TSF shall protect the stored audit records in the audit trail from
unauthorised deletion.

FAU_STG.2.2 The TSF shall be able to prevent unauthorised modifications to the stored
audit records in the audit trail.

FAU_STG.2.3 The TSF shall ensure that Patch code identification stored audit records will
be maintained when the following conditions occur: audit storage exhaustion, failure
and attack.

7.1.5.4 Additional Security Functional Requirements for Smart Card Platform

FPT_PHP.3/SCP Resistance to physical attack

FPT_PHP.3.1/SCP The TSF shall resist physical manipulation and physical probing to
the all TOE components implementing the TSF by responding automatically such that
the SFRs are always enforced.

Application Note:

The physical manipulation and physical probing include: changing operational conditions every
times: the frequency of the external clock, power supply, and temperature.

FPT_RCV.4/SCP Function recovery

FPT_RCV.4.1/SCP The TSF shall ensure that reading from and writing to static and
objects' fields interrupted by power loss have the property that the function either
completes successfully, or for the indicated failure scenarios, recovers to a consistent and
secure state.

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 98/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

FRU_FLT.1/SCP Degraded fault tolerance

FRU_FLT.1.1/SCP The TSF shall ensure the operation of Fault tolerance when the
following failures occur: failure of flash.

Application Note:

The TOE implements a mechanism to detect a problem of Flash. During the life of the TOE,
the Transaction area reduces its size to skip damaged FLASH bytes. During the writing or
erasing operations, up to 3 maximum attempts to get successful programming are done.

FPR_UNO.1/USE_KEY Unobservability

FPR_UNO.1.1/USE_KEY The TSF shall ensure that all subjects are unable to observe the
operation use on key by D.JCS_KEYS and APP_KEYs.

7.1.5.5 Additional Security Functional Requirements for the applets

FIA_AFL.1/PIN Authentication failure handling

FIA_AFL.1.1/PIN The TSF shall detect when an administrator configurable positive
integer within from 1 to 127 for OwnerPIN unsuccessful authentication attempts
occur related to any user authentication using a PIN.

FIA_AFL.1.2/PIN When the defined number of unsuccessful authentication attempts has
been met, the TSF shall block the PIN.

FMT_MTD.2/GP_PIN Management of limits on TSF data

FMT_MTD.2.1/GP_PIN The TSF shall restrict the specification of the limits for
D.NB_REMAINTRYGLB, GlobalPIN to R.Card_Manager.

FMT_MTD.2.2/GP_PIN The TSF shall take the following actions, if the TSF data are at, or
exceed, the indicated limits: block D.PIN

FMT_MTD.1/PIN Management of TSF data

FMT_MTD.1.1/PIN The TSF shall restrict the ability to change_default, query and
modify the OwnerPIN to applet itself.

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 99/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

FIA_AFL.1/GP_PIN Authentication failure handling

FIA_AFL.1.1/GP_PIN The TSF shall detect when an administrator configurable
positive integer within 3 to 15 unsuccessful authentication attempts occur related to
any user authentication using a Global PIN.

FIA_AFL.1.2/GP_PIN When the defined number of unsuccessful authentication attempts
has been met, the TSF shall block the Global PIN.

7.1.5.6 Additional Security Functional Requirements for Runtime Verification

Stack Control

FDP_ACC.2/RV_Stack Complete access control

FDP_ACC.2.1/RV_Stack The TSF shall enforce the Stack Access Control SFP on
S.STACK and all operations among subjects and objects covered by the SFP.

Refinement:

The operations involved in the policy are:

o OP.OPERAND_STACK_ACCESS

o OP.LOCAL_STACK_ACCESS

FDP_ACC.2.2/RV_Stack The TSF shall ensure that all operations between any subject
controlled by the TSF and any object controlled by the TSF are covered by an access control
SFP.

FDP_ACF.1/RV_Stack Security attribute based access control

FDP_ACF.1.1/RV_Stack The TSF shall enforce the Stack Access Control to objects based
on the following:

Subject/Object Security attributes

S.APPLET Active Applets, Applet Selection Status

S.STACK Stack Pointer

S.JCVM Current Frame Context

FDP_ACF.1.2/RV_Stack The TSF shall enforce the following rules to determine if an
operation among controlled subjects and controlled objects is allowed:

o An Active Applet selected may freely perform OP.LOCAL_STACK_ACCESS
upon stack pointer only if the index of the local variable accessed
matches the Current Frame Context attribute

o An Active Applet selected may freely perform
OP.OPERAND_STACK_ACCESS upon Stack Pointer only if the attribute
Stack Pointer matches the attribute Current Frame Context of S.JCVM.

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 100/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

FDP_ACF.1.3/RV_Stack The TSF shall explicitly authorise access of subjects to objects
based on the following additional rules: none.

FDP_ACF.1.4/RV_Stack The TSF shall explicitly deny access of subjects to objects based
on the following additional rules: none.

Application Note:

Any bytecode accessing a local variable has an index in parameter (byte or short). The first
rule aims at verifying that this index is always positive and inferior to the numbers of local
variables defined for this stack frame. Then the local variable slot is accessed using the index
that is relative to the base of local variables for this stack frame.

Any bytecode accessing the operand stack for push or pop operations is under the control of
rule 2. The second rule aims at verifying that the stack pointer is always in the range defined
by the base-of-stack and top-of-stack values defined for this stack frame.

The frame context attribute is made of the following elements:

 number-of-local variables and base-of-local-variable

 base-of-stack and top-of-stack

The policies defined in this SFR are enforced dynamically, each time an operation is performed.
Nevertheless, those verifications may be redundant with the ones made statically by the off-
card verifier, during the applet verification stage.

FMT_MSA.1/RV_Stack Management of security attributes

FMT_MSA.1.1/RV_Stack The TSF shall enforce the Stack Access Control SFP to restrict
the ability to modify the security attributes Current Frame Context and Stack Pointer
to the Java Card VM (S.JCVM).

FMT_MSA.2/RV_Stack Secure security attributes

FMT_MSA.2.1/RV_Stack The TSF shall ensure that only secure values are accepted for
Current Frame Context and Stack Pointer.

FMT_MSA.3/RV_Stack Static attribute initialisation

FMT_MSA.3.1/RV_Stack The TSF shall enforce the Stack Access Control SFP to provide
restrictive default values for security attributes that are used to enforce the SFP.

FMT_MSA.3.2/RV_Stack The TSF shall allow the any role to specify alternative initial
values to override the default values when an object or information is created.

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 101/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

FMT_SMF.1/RV_Stack Specification of Management Functions

FMT_SMF.1.1/RV_Stack The TSF shall be capable of performing the following management
functions: Modify the Current Frame Context and modify the Stack Pointer.

Application Note:

The frame context attribute is modified on method invocation. In that case, the previous
context attribute is saved on the stack. It will be restored on return of the invoked method.

Heap Access

FDP_ACC.2/RV_Heap Complete access control

FDP_ACC.2.1/RV_Heap The TSF shall enforce the Heap Access Control SFP on
O.CODE_PKG, O.JAVAOBJECT, S.JCVM, S.APPLET and all operations among subjects
and objects covered by the SFP.

Refinement:

The operations involved in the policy are:

o OP.ARRAY_ACCESS

o OP.INSTANCE_FIELD

o OP.STATIC_FIELD

o OP.FLOW

FDP_ACC.2.2/RV_Heap The TSF shall ensure that all operations between any subject
controlled by the TSF and any object controlled by the TSF are covered by an access control
SFP.

FDP_ACF.1/RV_Heap Security attribute based access control

FDP_ACF.1.1/RV_Heap The TSF shall enforce the Heap Access Control SFP to objects
based on the following:

Subject/Object Security attributes

O.CODE_PKG Package Boundary

O.JAVAOBJECT Object Boundary

S.JCVM Program Counter

S.APPLET Active Applets, Applet Selection Status

FDP_ACF.1.2/RV_Heap The TSF shall enforce the following rules to determine if an
operation among controlled subjects and controlled objects is allowed:

o S.APPLET may freely perform OP.ARRAY_ACCESS and
OP.INSTANCE_FIELD upon any O.JAVAOBJECT if the array cell index or
the instance field index match the object boundary attribute of
O.JAVAOBJECT

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 102/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

o S.APPLET may freely perform OP.STATIC_FIELD upon any O.CODE_PKG
if the static field index matches the Package Boundary attribute of
O.CODE_PKG.

o S.APPLET may freely perform OP.FLOW upon O.CODE_PKG if the
Program Counter attribute of S.JCVM matches the Package Boundary
attribute of O.CODE_PKG.

FDP_ACF.1.3/RV_Heap The TSF shall explicitly authorise access of subjects to objects
based on the following additional rules: none.

FDP_ACF.1.4/RV_Heap The TSF shall explicitly deny access of subjects to objects based on
the following additional rules: none.

Application Note:

The upper and lower boundaries of any object allocated on the heap are registered (Object
Boundary Attribute). Each time an object is accessed, the first rule verifies that the accessed
NVM location is comprised between those two boundaries.

The second rule aims at verifying that when a static field is accessed, the index of this field is
positive and inferior to the number of static fields of this package (part of Package Boundary
attribute).

The third rule aims at verifying that when a change of execution flow occurs, the computed
value for the newly computed value for the Program Counter is comprised within the
boundaries defined for this package (part of Package Boundary Attribute). This rule does not
concern invocation bytecode.

The policies defined in this SFR are enforced dynamically, each time an operation is performed.
Nevertheless, those verifications may be redundant with the ones made statically by the off-
card verifier, during the applet verification stage.

FMT_MSA.1/RV_Heap Management of security attributes

FMT_MSA.1.1/RV_Heap The TSF shall enforce the Heap Access Control SFP to restrict
the ability to modify the security attributes Package Boundary, Object Boundary and
Program Counter to S.JCVM.

FMT_MSA.2/RV_Heap Secure security attributes

FMT_MSA.2.1/RV_Heap The TSF shall ensure that only secure values are accepted for
Package Boundary, Object Boundary and Program Counter.

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 103/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

FMT_MSA.3/RV_Heap Static attribute initialisation

FMT_MSA.3.1/RV_Heap The TSF shall enforce the Heap Access Control SFP to provide
restrictive default values for security attributes that are used to enforce the SFP.

FMT_MSA.3.2/RV_Heap The TSF shall allow the no role to specify alternative initial values
to override the default values when an object or information is created.

FMT_SMF.1/RV_Heap Specification of Management Functions

FMT_SMF.1.1/RV_Heap The TSF shall be capable of performing the following management
functions: to modify the Program Counter attribute.

Transient Control

FDP_ACC.2/RV_Transient Complete access control

FDP_ACC.2.1/RV_Transient The TSF shall enforce the Transient Access Control SFP
on S.APPLET, S.JCVM and O.JAVAOBJECT and all operations among subjects and
objects covered by the SFP.

Refinement:

The operation involved in the policy is:

o OP.ARRAY_ACCESS

FDP_ACC.2.2/RV_Transient The TSF shall ensure that all operations between any subject
controlled by the TSF and any object controlled by the TSF are covered by an access control
SFP.

FDP_ACF.1/RV_Transient Security attribute based access control

FDP_ACF.1.1/RV_Transient The TSF shall enforce the Transient Access Control SFP to
objects based on the following:

Subject/Object Security Attributes

S.APPLET Active Applets, Applet Selection Status

S.JCVM COR Context, COD Context

O.JAVAOBJECT LifeTime

FDP_ACF.1.2/RV_Transient The TSF shall enforce the following rules to determine if an
operation among controlled subjects and controlled objects is allowed:

o S.APPLET may freely perform OP.ARRAY_ACCESS on O.JAVAOBJECT
whose LifeTime attribute has value "CLEAR_ON_RESET" only if the
targeted volatile memory space matches the COR Context attribute of
S.JCVM

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 104/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

o S.APPLET may freely perform OP.ARRAY_ACCESS on O.JAVAOBJECT
whose LifeTime attribute has value "CLEAR_ON_DESELECT" only if the
targeted volatile memory space matches the COD Context attribute of
S.JCVM.

FDP_ACF.1.3/RV_Transient The TSF shall explicitly authorise access of subjects to objects
based on the following additional rules: none.

FDP_ACF.1.4/RV_Transient The TSF shall explicitly deny access of subjects to objects
based on the following additional rules: none.

Application Note:

Each time an applet accesses a Clear On Reset (resp. Clear On Deselect) transient, these rules
verify that the accessed RAM area is in the range of the Clear On Reset transients space (resp.
Clear On Deselect) allocated for all the transients created by the applets of this package.

The COR context attribute represents the lower and upper limits for the Clear On Reset
transient space of the active applet package. The COD context attribute represents the lower
and upper limits for the Clear On Deselect transient space of the currently selected applet
package.

The policies defined in this SFR are enforced dynamically, each time an operation is performed.
Nevertheless, those verifications may be redundant with the ones made statically by the off-
card verifier, during the applet verification stage.

FMT_MSA.1/RV_Transient Management of security attributes

FMT_MSA.1.1/RV_Transient The TSF shall enforce the Transient Access Control SFP
to restrict the ability to modify the security attributes the security attributes COR
Context and COD Context to Java Card VM (S.JCVM).

FMT_MSA.2/RV_Transient Secure security attributes

FMT_MSA.2.1/RV_Transient The TSF shall ensure that only secure values are accepted for
COR Context and COD Context Security attributes of the Transient Access
Control SFP.

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 105/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

FMT_MSA.3/RV_Transient Static attribute initialisation

FMT_MSA.3.1/RV_Transient The TSF shall enforce the Transient Access Control SFP
to provide restrictive default values for security attributes that are used to enforce the
SFP.

FMT_MSA.3.2/RV_Transient The TSF shall allow the no role to specify alternative initial
values to override the default values when an object or information is created.

FMT_SMF.1/RV_Transient Specification of Management Functions

FMT_SMF.1.1/RV_Transient The TSF shall be capable of performing the following
management functions: modify the COR Context and COD Context Security
Attributes.

7.2 Security Assurance Requirements

The Evaluation Assurance Level is EAL5 augmented with AVA_VAN.5 and ALC_DVS.2.

7.3 Security Requirements Rationale

7.3.1 Objectives

7.3.1.1 Security Objectives for the TOE

IDENTIFICATION

O.SID Subjects' identity is AID-based (applets, packages), and is met by the following SFRs:
FDP_ITC.2/Installer, FIA_ATD.1/AID, FMT_MSA.1/JCRE, FMT_MSA.1/JCVM,
FMT_MSA.1/ADEL, FMT_MSA.1/CM, FMT_MSA.3/ADEL, FMT_MSA.3/FIREWALL,
FMT_MSA.3/JCVM, FMT_MSA.3/CM, FMT_SMF.1/CM, FMT_SMF.1/ADEL, FMT_MTD.1/JCRE
and FMT_MTD.3/JCRE.

Lastly, installation procedures ensure protection against forgery (the AID of an applet is
under the control of the TSFs) or re-use of identities (FIA_UID.2/AID, FIA_USB.1/AID).

EXECUTION

O.FIREWALL This objective is met by the FIREWALL access control policy
FDP_ACC.2/FIREWALL and FDP_ACF.1/FIREWALL, the JCVM information flow control policy
(FDP_IFF.1/JCVM, FDP_IFC.1/JCVM), the functional requirement FDP_ITC.2/Installer.

The functional requirements of the class FMT (FMT_MTD.1/JCRE, FMT_MTD.3/JCRE,
FMT_SMR.1/Installer, FMT_SMR.1, FMT_SMF.1, FMT_SMR.1/ADEL, FMT_SMF.1/ADEL,
FMT_SMF.1/CM, FMT_MSA.1/CM, FMT_MSA.3/CM, FMT_SMR.1/CM,

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 106/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

FMT_MSA.2/FIREWALL_JCVM, FMT_MSA.3/FIREWALL, FMT_MSA.3/JCVM,
FMT_MSA.1/ADEL, FMT_MSA.3/ADEL, S, FMT_MSA.1/JCRE, FMT_MSA.1/JCVM,) also
indirectly contribute to meet this objective.

This objective is also covered by the following additional SFRs:

o Stack control (*/RV_Stack): FDP_ACC.2/RV_Stack, FDP_ACF.1/RV_Stack,
FMT_MSA.1/RV_Stack, FMT_MSA.2/RV_Stack, FMT_MSA.3/RV_Stack,
FMT_SMF.1/RV_Stack

o Heap control (*/RV_Heap): FDP_ACC.2/RV_Heap, FDP_ACF.1/RV_Heap,
FMT_MSA.1/RV_Heap, FMT_MSA.2/RV_Heap, FMT_MSA.3/RV_Heap,
FMT_SMF.1/RV_Heap

o Transient control (*/RV_Transient): FDP_ACC.2/RV_Transient,
FDP_ACF.1/RV_Transient, FMT_MSA.1/RV_Transient, FMT_MSA.2/RV_Transient,
FMT_MSA.3/RV_Transient, FMT_SMF.1/RV_Transient

For each of those control, the SFR define the access control (FDP_ACC and FDP_ACF), the
operation (FMT_MSA) and the role (FMT_SMF).

The Stack control enforces O.FIREWALL by defining additional rules, such as the control of
the stack is more precise. Information is provided in the application note.

The Heap control enforces O.FIREWALL by defining additional rules, such as the heap usage
is improved. Information is provided in the application note.

The Transient enforces O.FIREWALL by defining additional rules, such as the heap usage
is improved. Information is provided in the application note.

O.GLOBAL_ARRAYS_CONFID Only arrays can be designated as global, and the only global
arrays required in the Java Card API are the APDU buffer, the global byte array input
parameter (bArray) to an applet's install method and the global arrays created by the
JCSystem.makeGlobalArray(…) method. The clearing requirement of these arrays is met by
(FDP_RIP.1/APDU, FDP_RIP.1/GlobalArray, and FDP_RIP.1/bArray respectively). The JCVM
information flow control policy (FDP_IFF.1/JCVM, FDP_IFC.1/JCVM) prevents an application
from keeping a pointer to a shared buffer, which could be used to read its contents when
the buffer is being used by another application.

O.GLOBAL_ARRAYS_INTEG This objective is met by the JCVM information flow control
policy (FDP_IFF.1/JCVM, FDP_IFC.1/JCVM), which prevents an application from keeping a
pointer to the APDU buffer of the card or to the global byte array of the applet's install
method or to the global arrays created by the JCSystem.makeGlobalArray(…) method. Such
a pointer could be used to access and modify it when the buffer is being used by another
application.

O.NATIVE This security objective is covered by FDP_ACF.1/FIREWALL ensuring that the
only means to execute native code is the invocation of a Java Card API method. This
objective mainly relies on the environmental objective OE.APPLET, which uphold the
assumption A.APPLET.

O.OPERATE The TOE is protected in various ways against applets' actions (FPT_TDC.1), the
FIREWALL access control policy FDP_ACC.2/FIREWALL and FDP_ACF.1/FIREWALL, and is
able to detect and block various failures or security violations during usual working
(FPT_FLS.1/ADEL, FPT_FLS.1, FPT_FLS.1/ODEL, FPT_FLS.1/Installer, FAU_ARP.1). Its
security-critical parts and procedures are also protected: safe recovery from failure is

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 107/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

ensured (FPT_RCV.3/Installer), applets' installation may be cleanly aborted
(FDP_ROL.1/FIREWALL), communication with external users and their internal subjects is
well-controlled (FDP_ITC.2/Installer, FIA_ATD.1/AID, FIA_USB.1/AID) to prevent alteration
of TSF data (also protected by components of the FPT class).

The FPT_RCV.4/SCP contributes to the objective O.OPERATE as it ensures that when
reading or writing operations are interrupted by power loss, the operation either is
completed or recovers in a consistent and secure state.

Almost every objective and/or functional requirement indirectly contributes to this one too.

Application note: Startup of the TOE (TSF-testing) can be covered by FPT_TST.1. This SFR
component is not mandatory in [R7], but appears in most of security requirements
documents for masked applications. Testing could also occur randomly. Self-tests may
become mandatory in order to comply with FIPS 140-2 [R22].

O.REALLOCATION This security objective is satisfied by the following SFRs:
FDP_RIP.1/APDU, FDP_RIP.1/GlobalArray, FDP_RIP.1/bArray, FDP_RIP.1/ABORT,
FDP_RIP.1/KEYS, FDP_RIP.1/TRANSIENT, FDP_RIP.1/ODEL, FDP_RIP.1/OBJECTS,
FDP_RIP.1/ADEL, which imposes that the contents of the re-allocated block shall always be
cleared before delivering the block.

O.RESOURCES The SFRs detects stack/memory overflows during execution of applications
(FAU_ARP.1, FPT_FLS.1/ADEL, FPT_FLS.1, FPT_FLS.1/ODEL, FPT_FLS.1/Installer). Failed
installations are not to create memory leaks (FDP_ROL.1/FIREWALL, FPT_RCV.3/Installer)
as well. Memory management is controlled by the SFRs (FMT_MTD.1/JCRE,
FMT_MTD.3/JCRE, FMT_SMR.1/Installer, FMT_SMR.1, FMT_SMF.1 FMT_SMR.1/ADEL,
FMT_SMF.1/ADEL, FMT_SMF.1/CM and FMT_SMR.1/CM).

SERVICES

O.ALARM This security objective is met by FPT_FLS.1/Installer, FPT_FLS.1, FPT_FLS.1/ADEL,
FPT_FLS.1/ODEL which guarantee that a secure state is preserved by the TSF when failures
occur, and FAU_ARP.1 which defines TSF reaction upon detection of a potential security
violation.

O.CIPHER This security objective is directly covered by FCS_CKM.1, FCS_CKM.4, FCS_COP.1
and FCS_COP.1/PP. FPR_UNO.1 and FPR_UNO.1/USE_KEY contributes in covering this
security objective and controls the observation of the cryptographic operations which may
be used to disclose the keys.

O.RNG This security objective is directly covered by FCS_RNG.1 which ensures the
cryptographic quality of random number generation.

O.KEY-MNGT This relies on the same security functional requirements as O.CIPHER, plus
FDP_RIP.1, FPT_TDC.1/CM and FDP_SDI.2/DATA as well. Precisely it is met by the following
components: FCS_CKM.1, FCS_CKM.4, FCS_COP.1, FCS_COP.1/PP, FPR_UNO.1,
FPR_UNO.1/USE_KEY, FDP_RIP.1/ODEL, FDP_RIP.1/OBJECTS, FDP_RIP.1/APDU,

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 108/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

FDP_RIP.1/GlobalArray, FDP_RIP.1/bArray, FDP_RIP.1/ABORT, FDP_RIP.1/KEYS,
FDP_RIP.1/ADEL and FDP_RIP.1/TRANSIENT.

O.PIN-MNGT This security objective is ensured by FDP_RIP.1/ODEL, FDP_RIP.1/OBJECTS,
FDP_RIP.1/APDU, FDP_RIP.1/GlobalArray, FDP_RIP.1/bArray, FDP_RIP.1/ABORT,
FDP_RIP.1/KEYS, FDP_RIP.1/ADEL, FDP_RIP.1/TRANSIENT, FPR_UNO.1,
FDP_ROL.1/FIREWALL and FDP_SDI.2/DATA security functional requirements. The TSFs
behind these are implemented by API classes. The firewall security functions
FDP_ACC.2/FIREWALL and FDP_ACF.1/FIREWALL shall protect the access to private and
internal data of the objects. FIA_AFL1.1/CM, FIA_AFL.1/PIN and FIA_AFL.1/GP_PIN ensure
the objective regarding authentications failures. FMT_MTD.1/PIN and FMT_MTD.2/GP_PIN

ensures the objective regarding the management of the TSF data.

O.TRANSACTION Directly met by FDP_ROL.1/FIREWALL, FDP_RIP.1/ABORT,
FDP_RIP.1/ODEL, FDP_RIP.1/APDU, FDP_RIP.1/GlobalArray, FDP_RIP.1/bArray,
FDP_RIP.1/KEYS, FDP_RIP.1/ADEL, FDP_RIP.1/TRANSIENT and FDP_RIP.1/OBJECTS
(more precisely, by the element FDP_RIP.1.1/ABORT).

OBJECT DELETION

O.OBJ-DELETION This security objective specifies that deletion of objects is secure. The
security objective is met by the security functional requirements FDP_RIP.1/ODEL and
FPT_FLS.1/ODEL.

APPLET MANAGEMENT

O.DELETION This security objective specifies that applet and package deletion must be
secure. The non-introduction of security holes is ensured by the ADEL access control policy
(FDP_ACC.2/ADEL, FDP_ACF.1/ADEL). The integrity and confidentiality of data that does
not belong to the deleted applet or package is a by-product of this policy as well. Non-
accessibility of deleted data is met by FDP_RIP.1/ADEL and the TSFs are protected against
possible failures of the deletion procedures (FPT_FLS.1/ADEL, FPT_RCV.3/Installer). The
security functional requirements of the class FMT (FMT_MSA.1/ADEL, FMT_MSA.3/ADEL,
FMT_SMR.1/ADEL) included in the group ADELG also contribute to meet this objective.

O.LOAD This security objective specifies that the loading of a package into the card must be
secure. Evidence of the origin of the package is enforced (FCO_NRO.2/CM) and the integrity
of the corresponding data is under the control of the PACKAGE LOADING information flow
policy (FDP_IFC.2/CM, FDP_IFF.1/CM) and FDP_UIT.1/CM. Appropriate identification
(FIA_UID.1/CM) and transmission mechanisms are also enforced (FTP_ITC.1/CM).

O.INSTALL This security objective specifies that installation of applets must be secure.
Security attributes of installed data are under the control of the FIREWALL access control

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 109/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

policy (FDP_ITC.2/Installer), and the TSFs are protected against possible failures of the
installer (FPT_FLS.1/Installer, FPT_RCV.3/Installer).

Additional security objectives for the TOE

O.SCP.SUPPORT The components FPT_RCV.4/SCP (SCP stands for smart card platform) are
used to support the objective O.SCP.SUPPORT to assist the TOE to recover in the event of
a power failure. If the power fails or the card is withdrawn prematurely from the CAD the
operation of the TOE may be interrupted leaving the TOE in an inconsistent state.

All the Crypto SFRS support this objective as they provide secure low-level cryptographic
processing to the Java Card System and Global Platform:

o FCS_CKM.1, FCS_CKM.4, FCS_COP.1,

o FCS_COP.1/CM,

o FCS_CKM.1/PP, FCS_COP.1/PP, FCS_CKM.4/PP

All the FSRs related to the Firewall contribute to the realization of the objective.

The FDP_ROL.1 Firewall ensures the rollback of some operations within the specified scope
as defined in the ROL.1.2/Firewall.

Application Note: all SFRs related to O.OPERATE and O.ALARM support the O.SCP.SUPPORT

O.SCP.IC This objective is met by the component FPT_PHP.3/SCP and FCS_RNG.1.

O.SCP.RECOVERY The component FPT_RCV.4/SCP is used to support the objective
O.SCP.RECOVERY to assist the TOE to recover in the event of a power failure. If the power
fails or the card is withdrawn prematurely from the CAD the operation of the TOE may be
interrupted leaving the TOE in an inconsistent state. This objective is met by the
components FPT_FLS.1, FAU_ARP.1 and FRU_FLT.1/SCP.

O.RESIDENT_APPLICATION This objective is covered by the following set of SFR:

o Access control: FDP_ACC.2/PP, FDP_ACF.1/PP, FDP_UCT.1/PP and FDP_ITC.1/PP

o Rules for authentication: FIA_AFL.1/PP, FIA_UAU.1/PP

o Security Management: FMT_MSA.1/PP, FMT_SMF.1/PP, FMT_MOF.1/PP,
FMT_SMR.2/PP, FMT_MSA.3/PP and FMT_SMR.2/CM

o Once the ISK is loaded, the RA ensures MSK and LSK are no more available thanks
to Cryptographic Key Destruction: FCS_CKM.4/PP.

This objective is also covered by Card Manufacturer authentication: Rules for
authentication: FIA_UAU.7/CardIssuer, FIA_UAU.4/CardIssuer, FIA_UAU.4/CardManu,
FIA_UAU.7/CardManu.

O.CARD_MANAGEMENT This objective is fulfilled by the following set of SFR:

The FDP_ACC.2/ADEL and FDP_ACF.1/ADEL contribute to meet the ADEL access control
policy that ensures the non-introduction of security holes.

The FDP_RIP.1/ADEL ensure that the deleted information is not accessible.

The FMT_MSA.1/ADEL ensures restrict the ability to modify the secure attributes the
FMT_MSA.3/ADEL ensures the assignment of restrictive values.

The FMT_SMR.1/ADEL maintains the role of the applet deletion manager.

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 110/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

The FPT_FLS.1/ADEL contributes to the objective by protecting the TSFs against possible
failures of the deletion procedure.

The 2 SFRs FPT_RCV.3/Installer and FPT_FLS.1/Installer contributes to meet the objective
by protecting the TSFs from failures of the deletion procedure.

The SFR FDP_UIT.1/CM contributes by enforcing the Secure Channel Protocol Information
flow control policy and the Security Domain access control policy which control the integrity
of the corresponding data.

The SFR FIA_UID.1/CM testes if the Secure Channel is open to allow card management
operations.

The SFR FDP_IFF.1/CM ensures the access control policy for the loaded data (as packages).

The FCO_NRO.2/CM this SFR ensures the origin of the load file. It verifies the identity of
the origin of the load file before start the loading.

FCO_NRO.2/CM_DAP this SFR generates an evidence of the origin of the transmitted load
file during CAP File loading.

The FDP_IFC.2/CM, this SFR ensures that loading commands are issued in the Secure
Channel session.

The SFR FDP_ROL.1/FIREWALLensures that the card management operations are cleaned
aborted.

The SFR FDP_ITC.2/Installer enforces the Firewall access control policy and flow control
policy when importing card management data.

The SFR FPT_FLS.1/ODEL ensures the preservation of secure state when failures occur.

The SFR FMT_MSA.1/CM ensures the management of the security attributes to the card
manager, for the modification of the life cycle of the card, the keyset version and value,…

The SFR FMT_MSA.3/CM, this SFR ensures that the security attributes can only be changed
by the card manager.

The SFR FMT_SMF.1/CM, Only the card manger is able to modify the security attributes of
the management functions. The security role is specified in the FMT_SMR.1/CM and
FMT_SMR.2/CM.

The SFR FTP_ITC.1/CM ensures the trusted Channel Communications.

FIA_AFL.1/CM, FIA_UAU.1/CM, FIA_UAU.4/CardIssuer and FIA_UAU.7/CardIssuer, ensure
the authentication of the card issuer before gaining access to management operations.

The FPR_UNO.1/Key_CM ensures the un-observability of the CM key when imported.

The FPT_TST.1This TSF contributes to ensure the correct operation of the card
management functions as it tests the integrity of the TSF functions during initial start-up.

The SFRs FMT_SMF.1/PP and FMT_SMR.2/PP ensure authroized usage during pre-
personalization.

The SFRs FIA_UAU.4/CardManu and FIA_UAU.7/CardManu help secure the authentication
of the card manufacturer.

The SFR FPT_TDC.1/CM ensures that key sets and packages loaded are well under key
management.

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 111/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

O.SECURE_COMPARE This objective is fulfilled by FDP_SDI.2/DATA. It ensures that
comparison is confidential.

O.PATCH_LOADING Authentication of the entity loading the patch by the TOE

FDP_ACC.2/PP, FDP_ACF.1/PP, FIA_UAU.1/PP and FIA_UID.1/PP provide access control for
patch loading. The subject entitled to load the patch is authenticated by the TOE thanks to
FCS_COP.1/PP. Wrong authentication of the Card manufacturer agent are detected thanks
to FIA_AFL.1/PP

Authentication of the TOE

To avoid impersonation of the TOE by a fake chip, the TOE authenticates itself; from phase
6 with FTP_ITC.1/CM and FCS_COP.1/CM thanks to the TOE authentication key (ISK/KMC).
From phase 6, the TOE authentication is required prior to any trusted channel establishment
with FTP_ITC.1/CM (data sent by the TOE must be decrypted to carry on the
authentication).

The TOE authentication key (ISK/KMC) is securely loaded in phase 4/5 protected in
confidentiality with FDP_UCT.1/PP and integrity with FDP_UIT.1/PP through the trusted
channel established by the Card Manufacturer with FDP_ITC.1/PP. The trusted channel and
the TOE authentication key (ISK/KMC) encryption is supported by FCS_COP.1/PP that relies
on the TOE’s MSK which is the first key present in the TOE.

Diversification of keys

The TOE’s MSK used to authenticate the Card manufacturer is derived from the MSK thanks
to FCS_CKM.1/PP before the first use. The MSK is loaded in the TOE in phase 1 (covered
by [ALC]).

Integrity, confidentiality and authenticity of the patch during loading

Patch loading is performed in a confidential manner with FDP_UCT.1/PP and protected in
integrity and confidentiality with FDP_UIT.1/PP. Confidentiality, integrity and authenticity
of the patch loading is supported by cryptographic mechanisms supported by
FCS_COP.1/PP.

Patch data to be written in the TOE have been prior encrypted by the TOE developer using
dedicated key. Once these data loaded, the integrity (SHA256) of the modified code is
update and compared to the provided one in the patch package.

Erasure of the key used

FCS_CKM.4/PP ensures the secure destruction of the keys involved in the patch loading
mechanism (LSK, MSK and JSK).

Identification of the patch after loading

Once loaded and during the rest of the TOE life cycle, the identification and authentication
(unique identifier of the patch) of the patch, being a part of the TOE is provided by
FAU_STG.2. When requested, the identification and authentication data (of entire code,
including patch) are dynamically retrieved from the patch code stored in the non-volatile
memory of the TOE.

Integrity check before usage of the patch

At start up, the integrity of the entire code, patch included, is checked by the TOE through
self-tests provided by FPT_TST.1. In case the computed signature differs from the one
stored in NVM, an integrity error is detected and a killcard is raised.

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 112/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

7.3.2 Rationale tables of Security Objectives and SFRs

Security Objectives Security Functional Requirements Rationale

O.SID FIA_ATD.1/AID, FIA_UID.2/AID,
FMT_MSA.1/JCRE, FMT_MSA.1/ADEL,
FMT_MSA.3/ADEL, FMT_MSA.3/FIREWALL,
FMT_MSA.1/CM, FMT_MSA.3/CM,
FDP_ITC.2/Installer, FMT_SMF.1/CM,
FMT_SMF.1/ADEL, FMT_MTD.1/JCRE,
FMT_MTD.3/JCRE, FIA_USB.1/AID,
FMT_MSA.1/JCVM, FMT_MSA.3/JCVM

Section 7.3.1

O.FIREWALL FDP_IFC.1/JCVM, FDP_IFF.1/JCVM,
FMT_SMR.1/Installer, FMT_MSA.1/CM,
FMT_MSA.3/CM, FMT_SMR.1/CM,
FMT_MSA.3/FIREWALL, FMT_SMR.1,
FMT_MSA.1/ADEL, FMT_MSA.3/ADEL,
FMT_SMR.1/ADEL, FMT_MSA.1/JCRE,
FDP_ITC.2/Installer, FDP_ACC.2/FIREWALL,
FDP_ACF.1/FIREWALL, FMT_SMF.1/ADEL,
FMT_SMF.1/CM, FMT_SMF.1,
FMT_MSA.2/FIREWALL_JCVM,
FMT_MTD.1/JCRE, FMT_MTD.3/JCRE,
FMT_MSA.1/JCVM, FMT_MSA.3/JCVM,
FDP_ACC.2/RV_Stack, FDP_ACF.1/RV_Stack,
FMT_MSA.1/RV_Stack,
FMT_MSA.2/RV_Stack,
FMT_MSA.3/RV_Stack,
FMT_SMF.1/RV_Stack,
FDP_ACC.2/RV_Heap, FDP_ACF.1/RV_Heap,
FMT_MSA.1/RV_Heap,
FMT_MSA.2/RV_Heap,
FMT_MSA.3/RV_Heap,
FMT_SMF.1/RV_Heap,
FDP_ACC.2/RV_Transient,
FDP_ACF.1/RV_Transient,
FMT_MSA.1/RV_Transient,
FMT_MSA.2/RV_Transient,
FMT_MSA.3/RV_Transient,
FMT_SMF.1/RV_Transient

Section 7.3.1

O.GLOBAL_ARRAYS_CONFID FDP_IFC.1/JCVM, FDP_IFF.1/JCVM,
FDP_RIP.1/bArray, FDP_RIP.1/APDU,
FDP_RIP.1/GlobalArray

Section 7.3.1

O.GLOBAL_ARRAYS_INTEG FDP_IFC.1/JCVM, FDP_IFF.1/JCVM Section 7.3.1

O.NATIVE FDP_ACF.1/FIREWALL Section 7.3.1

O.OPERATE FPT_RCV.4/SCP, FAU_ARP.1,
FDP_ROL.1/FIREWALL, FIA_ATD.1/AID,
FPT_FLS.1/ADEL, FPT_FLS.1,
FPT_FLS.1/ODEL, FPT_FLS.1/Installer,

Section 7.3.1

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 113/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

Security Objectives Security Functional Requirements Rationale

FDP_ITC.2/Installer, FPT_RCV.3/Installer,
FDP_ACC.2/FIREWALL,
FDP_ACF.1/FIREWALL, FPT_TDC.1,
FIA_USB.1/AID, FPT_TST.1

O.REALLOCATION FDP_RIP.1/ABORT, FDP_RIP.1/APDU,
FDP_RIP.1/GlobalArray, FDP_RIP.1/bArray,
FDP_RIP.1/KEYS, FDP_RIP.1/TRANSIENT,
FDP_RIP.1/OBJECTS, FDP_RIP.1/ADEL,
FDP_RIP.1/ODEL

Section 7.3.1

O.RESOURCES FAU_ARP.1, FDP_ROL.1/FIREWALL,
FMT_SMR.1/Installer, FMT_SMR.1,
FMT_SMR.1/ADEL, FPT_FLS.1/Installer,
FPT_FLS.1/ODEL, FPT_FLS.1,
FPT_FLS.1/ADEL, FPT_RCV.3/Installer,
FMT_SMR.1/CM, FMT_SMF.1/ADEL,
FMT_SMF.1/CM, FMT_SMF.1,
FMT_MTD.1/JCRE, FMT_MTD.3/JCRE

Section 7.3.1

O.ALARM FPT_FLS.1/Installer, FPT_FLS.1,
FPT_FLS.1/ADEL, FPT_FLS.1/ODEL,
FAU_ARP.1

Section 7.3.1

O.CIPHER FCS_CKM.1, FCS_CKM.4, FCS_COP.1,
FPR_UNO.1, FPR_UNO.1/USE_KEY,
FCS_COP.1/PP

Section 7.3.1

O.RNG FCS_RNG.1 Section 7.3.1

O.KEY-MNGT FCS_CKM.1, FCS_CKM.4, FCS_COP.1,
FPR_UNO.1, FDP_RIP.1/ODEL,
FDP_RIP.1/OBJECTS, FDP_RIP.1/APDU,
FDP_RIP.1/GlobalArray, FDP_RIP.1/bArray,
FDP_RIP.1/ABORT, FDP_RIP.1/KEYS,
FDP_RIP.1/TRANSIENT, FDP_RIP.1/ADEL,
FDP_SDI.2/DATA, FCS_COP.1/PP,
FPR_UNO.1/USE_KEY, FPT_TDC.1/CM

Section 7.3.1

O.PIN-MNGT

FDP_RIP.1/ODEL, FDP_RIP.1/OBJECTS,
FDP_RIP.1/APDU, FDP_RIP.1/GlobalArray,
FDP_RIP.1/bArray, FDP_RIP.1/KEYS,
FDP_RIP.1/ABORT, FDP_RIP.1/TRANSIENT,
FPR_UNO.1, FDP_RIP.1/ADEL,
FDP_ROL.1/FIREWALL, FDP_SDI.2/DATA,
FDP_ACC.2/FIREWALL,
FDP_ACF.1/FIREWALL, FIA_AFL.1/PIN,
FMT_MTD.1/PIN, FIA_AFL.1/GP_PIN,
FMT_MTD.2/GP_PIN

Section 7.3.1

O.TRANSACTION FDP_ROL.1/FIREWALL, FDP_RIP.1/ABORT,
FDP_RIP.1/APDU, FDP_RIP.1/GlobalArray,
FDP_RIP.1/bArray, FDP_RIP.1/KEYS,

Section 7.3.1

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 114/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

Security Objectives Security Functional Requirements Rationale

FDP_RIP.1/ADEL, FDP_RIP.1/OBJECTS,
FDP_RIP.1/TRANSIENT, FDP_RIP.1/ODEL

O.OBJ-DELETION FDP_RIP.1/ODEL, FPT_FLS.1/ODEL Section 7.3.1

O.DELETION FDP_ACC.2/ADEL, FDP_ACF.1/ADEL,
FDP_RIP.1/ADEL, FMT_MSA.1/ADEL,
FMT_MSA.3/ADEL, FPT_FLS.1/ADEL,
FMT_SMR.1/ADEL, FPT_RCV.3/Installer

Section 7.3.1

O.LOAD FCO_NRO.2/CM, FDP_IFC.2/CM,
FDP_IFF.1/CM, FDP_UIT.1/CM,
FIA_UID.1/CM, FTP_ITC.1/CM

Section 7.3.1

O.INSTALL FDP_ITC.2/Installer, FPT_FLS.1/Installer,
FPT_RCV.3/Installer

Section 7.3.1

O.SCP.SUPPORT FPT_RCV.4/SCP, FCS_CKM.1, FCS_CKM.4,
FCS_COP.1, FCS_COP.1/CM, FCS_CKM.4/PP,
FCS_COP.1/PP, FCS_CKM.1/PP

Section 7.3.1

O.SCP.IC FPT_PHP.3/SCP, FCS_RNG.1 Section 7.3.1

O.SCP.RECOVERY FRU_FLT.1/SCP, FPT_RCV.4/SCP,
FAU_ARP.1, FPT_FLS.1

Section 7.3.1

O.RESIDENT_APPLICATION FDP_ACC.2/PP, FDP_ACF.1/PP,
FDP_UCT.1/PP, FDP_ITC.1/PP,
FIA_AFL.1/PP, FIA_UAU.1/PP,
FMT_MSA.1/PP, FMT_SMF.1/PP,
FMT_MOF.1/PP, FMT_SMR.2/PP,
FMT_MSA.3/PP, FCS_CKM.4/PP,
FMT_SMR.2/CM, FIA_UAU.4/CardManu,
FIA_UAU.7/CardManu,
FIA_UAU.4/CardIssuer,
FIA_UAU.7/CardIssuer

Section 7.3.1

O.CARD_MANAGEMENT FDP_ACC.2/ADEL, FDP_ACF.1/ADEL,
FDP_RIP.1/ADEL, FMT_MSA.1/ADEL,
FMT_MSA.3/ADEL, FMT_SMR.1/ADEL,
FPT_FLS.1/ADEL, FDP_ITC.2/Installer,
FPT_FLS.1/Installer, FPT_RCV.3/Installer,
FDP_UIT.1/CM, FDP_ROL.1/FIREWALL,
FPT_FLS.1/ODEL, FIA_AFL.1/CM,
FPT_TST.1, FIA_UID.1/CM, FDP_IFF.1/CM,
FMT_MSA.1/CM, FMT_MSA.3/CM,
FMT_SMR.2/PP, FMT_SMF.1/PP,
FTP_ITC.1/CM, FMT_SMR.2/CM,
FDP_IFC.2/CM, FCO_NRO.2/CM_DAP,
FIA_UAU.7/CardIssuer, FPR_UNO.1/Key_CM,
FIA_UAU.4/CardIssuer,
FIA_UAU.4/CardManu,
FIA_UAU.7/CardManu, FMT_SMF.1/CM,

Section 7.3.1

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 115/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

Security Objectives Security Functional Requirements Rationale

FMT_SMR.1/CM, FIA_UAU.1/CM,
FCO_NRO.2/CM, FPT_TDC.1/CM

O.SECURE_COMPARE

FDP_SDI.2/DATA Section 7.3.1

O.PATCH_LOADING FDP_ACC.2/PP, FDP_ACF.1/PP,
FIA_UAU.1/PP, FIA_UID.1/PP,
FCS_COP.1/PP, FTP_ITC.1/CM,
FCS_COP.1/CM, FDP_UIT.1/PP,
FDP_ITC.1/PP, FCS_CKM.1/PP,
FDP_UCT.1/PP, FCS_CKM.4/PP, FAU_STG.2,
FIA_AFL.1/PP, FPT_TST.1

Section 7.3.1

Table 11 Security Objectives and SFRs - Coverage

Security Functional
Requirements

Security Objectives

FDP_ACC.2/FIREWALL O.FIREWALL, O.OPERATE, O.PIN-MNGT

FDP_ACF.1/FIREWALL O.FIREWALL, O.NATIVE, O.OPERATE, O.PIN-MNGT

FDP_IFC.1/JCVM O.FIREWALL, O.GLOBAL_ARRAYS_CONFID,
O.GLOBAL_ARRAYS_INTEG

FDP_IFF.1/JCVM O.FIREWALL, O.GLOBAL_ARRAYS_CONFID,
O.GLOBAL_ARRAYS_INTEG

FDP_RIP.1/OBJECTS O.REALLOCATION, O.KEY-MNGT, O.PIN-MNGT,
O.TRANSACTION

FMT_MSA.1/JCRE O.SID, O.FIREWALL

FMT_MSA.1/JCVM O.SID, O.FIREWALL

FMT_MSA.2/FIREWALL_JCVM O.FIREWALL

FMT_MSA.3/FIREWALL O.SID, O.FIREWALL

FMT_MSA.3/JCVM O.SID, O.FIREWALL

FMT_SMF.1 O.FIREWALL, O.RESOURCES

FMT_SMR.1 O.FIREWALL, O.RESOURCES

FCS_CKM.1 O.CIPHER, O.KEY-MNGT, O.SCP.SUPPORT

FCS_CKM.4 O.CIPHER, O.KEY-MNGT, O.SCP.SUPPORT

FCS_COP.1 O.CIPHER, O.KEY-MNGT, O.SCP.SUPPORT

FCS_RNG.1 O.RNG, O.SCP.IC

FDP_RIP.1/ABORT O.REALLOCATION, O.KEY-MNGT, O.PIN-MNGT,
O.TRANSACTION

FDP_RIP.1/APDU O.GLOBAL_ARRAYS_CONFID, O.REALLOCATION,
O.KEY-MNGT, O.PIN-MNGT, O.TRANSACTION

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 116/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

Security Functional
Requirements

Security Objectives

FDP_RIP.1/bArray O.GLOBAL_ARRAYS_CONFID, O.REALLOCATION,
O.KEY-MNGT, O.PIN-MNGT, O.TRANSACTION

FDP_RIP.1/GlobalArray O.GLOBAL_ARRAYS_CONFID, O.REALLOCATION,
O.KEY-MNGT, O.PIN-MNGT, O.TRANSACTION

FDP_RIP.1/KEYS O.REALLOCATION, O.KEY-MNGT, O.PIN-MNGT,
O.TRANSACTION

FDP_RIP.1/TRANSIENT O.REALLOCATION, O.KEY-MNGT, O.PIN-MNGT,
O.TRANSACTION

FDP_ROL.1/FIREWALL O.OPERATE, O.RESOURCES, O.PIN-MNGT,
O.TRANSACTION, O.CARD_MANAGEMENT

FAU_ARP.1 O.OPERATE, O.RESOURCES, O.ALARM,
O.SCP.RECOVERY

FDP_SDI.2/DATA O.KEY-MNGT, O.PIN-MNGT

FPR_UNO.1 O.CIPHER, O.KEY-MNGT, O.PIN-MNGT

FPT_FLS.1 O.OPERATE, O.RESOURCES, O.ALARM,
O.SCP.RECOVERY

FPT_TDC.1 O.OPERATE

FIA_ATD.1/AID O.SID, O.OPERATE

FIA_UID.2/AID O.SID

FIA_USB.1/AID O.SID, O.OPERATE

FMT_MTD.1/JCRE O.SID, O.FIREWALL, O.RESOURCES

FMT_MTD.3/JCRE O.SID, O.FIREWALL, O.RESOURCES

FDP_ITC.2/Installer O.SID, O.FIREWALL, O.OPERATE, O.INSTALL,
O.CARD_MANAGEMENT

FMT_SMR.1/Installer O.FIREWALL, O.RESOURCES

FPT_FLS.1/Installer O.OPERATE, O.RESOURCES, O.ALARM, O.INSTALL,
O.CARD_MANAGEMENT

FPT_RCV.3/Installer O.OPERATE, O.RESOURCES, O.DELETION,
O.INSTALL, O.CARD_MANAGEMENT

FDP_ACC.2/ADEL O.DELETION, O.CARD_MANAGEMENT

FDP_ACF.1/ADEL O.DELETION, O.CARD_MANAGEMENT

FDP_RIP.1/ADEL O.REALLOCATION, O.KEY-MNGT, O.PIN-MNGT,
O.TRANSACTION, O.DELETION,
O.CARD_MANAGEMENT

FMT_MSA.1/ADEL O.SID, O.FIREWALL, O.DELETION,
O.CARD_MANAGEMENT

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 117/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

Security Functional
Requirements

Security Objectives

FMT_MSA.3/ADEL O.SID, O.FIREWALL, O.DELETION,
O.CARD_MANAGEMENT

FMT_SMF.1/ADEL O.SID, O.FIREWALL, O.RESOURCES

FMT_SMR.1/ADEL O.FIREWALL, O.RESOURCES, O.DELETION,
O.CARD_MANAGEMENT

FPT_FLS.1/ADEL O.OPERATE, O.RESOURCES, O.ALARM, O.DELETION,
O.CARD_MANAGEMENT

FDP_RIP.1/ODEL O.REALLOCATION, O.KEY-MNGT, O.PIN-MNGT,
O.TRANSACTION, O.OBJ-DELETION

FPT_FLS.1/ODEL O.OPERATE, O.RESOURCES, O.ALARM, O.OBJ-
DELETION, O.CARD_MANAGEMENT

FCO_NRO.2/CM O.LOAD, O.CARD_MANAGEMENT

FDP_IFC.2/CM O.LOAD, O.CARD_MANAGEMENT

FDP_IFF.1/CM O.LOAD, O.CARD_MANAGEMENT

FDP_UIT.1/CM O.LOAD, O.CARD_MANAGEMENT

FIA_UID.1/CM O.LOAD, O.CARD_MANAGEMENT

FMT_MSA.1/CM O.SID, O.FIREWALL, O.CARD_MANAGEMENT

FMT_MSA.3/CM O.SID, O.FIREWALL, O.CARD_MANAGEMENT

FMT_SMF.1/CM O.SID, O.FIREWALL, O.RESOURCES,
O.CARD_MANAGEMENT

FMT_SMR.1/CM O.FIREWALL, O.RESOURCES, O.CARD_MANAGEMENT

FTP_ITC.1/CM O.LOAD, O.CARD_MANAGEMENT,
O.PATCH_LOADING

FPT_TST.1 O.OPERATE, O.CARD_MANAGEMENT,
O.PATCH_LOADING

FCO_NRO.2/CM_DAP O.CARD_MANAGEMENT

FIA_AFL.1/CM O.CARD_MANAGEMENT

FIA_UAU.1/CM O.CARD_MANAGEMENT

FIA_UAU.4/CardIssuer O.RESIDENT_APPLICATION, O.CARD_MANAGEMENT

FIA_UAU.7/CardIssuer O.RESIDENT_APPLICATION, O.CARD_MANAGEMENT

FPR_UNO.1/Key_CM O.CARD_MANAGEMENT

FPT_TDC.1/CM

O.CARD_MANAGEMENT, O.KEY-MNGT

FMT_SMR.2/CM O.RESIDENT_APPLICATION, O.CARD_MANAGEMENT

FCS_COP.1/CM O.SCP.SUPPORT, O.PATCH_LOADING

FDP_ACC.2/PP O.RESIDENT_APPLICATION, O.PATCH_LOADING

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 118/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

Security Functional
Requirements

Security Objectives

FDP_ACF.1/PP O.RESIDENT_APPLICATION, O.PATCH_LOADING

FDP_UCT.1/PP O.RESIDENT_APPLICATION, O.PATCH_LOADING

FDP_ITC.1/PP O.RESIDENT_APPLICATION, O.PATCH_LOADING

FIA_AFL.1/PP O.RESIDENT_APPLICATION, O.PATCH_LOADING

FIA_UAU.1/PP O.RESIDENT_APPLICATION, O.PATCH_LOADING

FIA_UID.1/PP O.PATCH_LOADING

FMT_MSA.1/PP O.RESIDENT_APPLICATION

FMT_SMF.1/PP O.RESIDENT_APPLICATION, O.CARD_MANAGEMENT

FIA_UAU.4/CardManu O.RESIDENT_APPLICATION, O.CARD_MANAGEMENT

FIA_UAU.7/CardManu O.RESIDENT_APPLICATION, O.CARD_MANAGEMENT

FMT_MOF.1/PP O.RESIDENT_APPLICATION

FMT_SMR.2/PP O.RESIDENT_APPLICATION, O.CARD_MANAGEMENT

FMT_MSA.3/PP O.RESIDENT_APPLICATION

FCS_COP.1/PP O.CIPHER, O.KEY-MNGT, O.SCP.SUPPORT,
O.PATCH_LOADING

FCS_CKM.4/PP O.SCP.SUPPORT, O.RESIDENT_APPLICATION,
O.PATCH_LOADING

FDP_UIT.1/PP O.PATCH_LOADING

FCS_CKM.1/PP O.SCP.SUPPORT, O.PATCH_LOADING

FAU_STG.2 O.PATCH_LOADING

FPT_PHP.3/SCP O.SCP.IC

FPT_RCV.4/SCP O.OPERATE, O.SCP.SUPPORT, O.SCP.RECOVERY

FRU_FLT.1/SCP O.SCP.RECOVERY

FPR_UNO.1/USE_KEY O.CIPHER, O.KEY-MNGT

FIA_AFL.1/PIN O.PIN-MNGT

FMT_MTD.2/GP_PIN

O.PIN-MNGT

FMT_MTD.1/PIN O.PIN-MNGT

FIA_AFL.1/GP_PIN O.PIN-MNGT

FDP_ACC.2/RV_Stack O.FIREWALL

FDP_ACF.1/RV_Stack O.FIREWALL

FMT_MSA.1/RV_Stack O.FIREWALL

FMT_MSA.2/RV_Stack O.FIREWALL

FMT_MSA.3/RV_Stack O.FIREWALL

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 119/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

Security Functional
Requirements

Security Objectives

FMT_SMF.1/RV_Stack O.FIREWALL

FDP_ACC.2/RV_Heap O.FIREWALL

FDP_ACF.1/RV_Heap O.FIREWALL

FMT_MSA.1/RV_Heap O.FIREWALL

FMT_MSA.2/RV_Heap O.FIREWALL

FMT_MSA.3/RV_Heap O.FIREWALL

FMT_SMF.1/RV_Heap O.FIREWALL

FDP_ACC.2/RV_Transient O.FIREWALL

FDP_ACF.1/RV_Transient O.FIREWALL

FMT_MSA.1/RV_Transient O.FIREWALL

FMT_MSA.2/RV_Transient O.FIREWALL

FMT_MSA.3/RV_Transient O.FIREWALL

FMT_SMF.1/RV_Transient O.FIREWALL

Table 12 SFRs and Security Objectives

7.3.3 Rationale table with objectives defined in ANSSI-CC-Note 06

TOE Security Objectives Note 06 Security Objectives Comment

O.SID

O.TOE_Identification TOE is identified with its
package and patch

O.LOAD O.Secure_Load_ACode Ensures secure Package
loading

O.INSTALL O.Secure_AC_Activation Ensures secure activation or
none installation in case of
exception.

O.PATCH_LOADING

O.Secure_Load_ACode and
O.TOE_Identification

O.PATCH_LOADING ensures
trustable identification and
authentication (static
signature) data of the loaded
patch. The data to be loaded
are encrypted and the patch
integrity is checked.

Table 13 Security Objectives Vs Note 06 Objectives

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 120/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

7.3.4 Dependencies

7.3.4.1 SFRs Dependencies

Requirements CC Dependencies Satisfied Dependencies

FDP_ITC.2/Installer (FDP_ACC.1 or FDP_IFC.1)
and (FPT_TDC.1) and
(FTP_ITC.1 or FTP_TRP.1)

FPT_TDC.1, FDP_IFC.2/CM, FTP_ITC.1/CM

FMT_SMR.1/Installer (FIA_UID.1)

FPT_FLS.1/Installer No Dependencies

FPT_RCV.3/Installer (AGD_OPE.1) AGD_OPE.1

FDP_ACC.2/ADEL (FDP_ACF.1) FDP_ACF.1/ADEL

FDP_ACF.1/ADEL (FDP_ACC.1) and
(FMT_MSA.3)

FDP_ACC.2/ADEL, FMT_MSA.3/ADEL

FDP_RIP.1/ADEL No Dependencies

FMT_MSA.1/ADEL (FDP_ACC.1 or FDP_IFC.1)
and (FMT_SMF.1) and
(FMT_SMR.1)

FDP_ACC.2/ADEL, FMT_SMF.1/ADEL,
FMT_SMR.1/ADEL

FMT_MSA.3/ADEL (FMT_MSA.1) and
(FMT_SMR.1)

FMT_MSA.1/ADEL, FMT_SMR.1/ADEL

FMT_SMF.1/ADEL No Dependencies

FMT_SMR.1/ADEL (FIA_UID.1)

FPT_FLS.1/ADEL No Dependencies

FDP_RIP.1/ODEL No Dependencies

FPT_FLS.1/ODEL No Dependencies

FDP_ACC.2/FIREWALL (FDP_ACF.1) FDP_ACF.1/FIREWALL

FDP_ACF.1/FIREWALL (FDP_ACC.1) and
(FMT_MSA.3)

FDP_ACC.2/FIREWALL, FMT_MSA.3/FIREWALL

FDP_IFC.1/JCVM (FDP_IFF.1) FDP_IFF.1/JCVM

FDP_IFF.1/JCVM (FDP_IFC.1) and (FMT_MSA.3) FDP_IFC.1/JCVM, FMT_MSA.3/JCVM

FDP_RIP.1/OBJECTS No Dependencies

FMT_MSA.1/JCRE (FDP_ACC.1 or FDP_IFC.1)
and (FMT_SMF.1) and

(FMT_SMR.1)

FDP_ACC.2/FIREWALL, FMT_SMR.1

FMT_MSA.1/JCVM (FDP_ACC.1 or FDP_IFC.1)
and (FMT_SMF.1) and
(FMT_SMR.1)

FDP_ACC.2/FIREWALL, FDP_IFC.1/JCVM,
FMT_SMF.1, FMT_SMR.1

FMT_MSA.2/FIREWALL_JCVM (FDP_ACC.1 or FDP_IFC.1)
and (FMT_MSA.1) and

(FMT_SMR.1)

FDP_ACC.2/FIREWALL, FDP_IFC.1/JCVM,
FMT_MSA.1/JCRE, FMT_MSA.1/JCVM,

FMT_SMR.1

FMT_MSA.3/FIREWALL (FMT_MSA.1) and
(FMT_SMR.1)

FMT_MSA.1/JCRE, FMT_MSA.1/JCVM,
FMT_SMR.1

FMT_MSA.3/JCVM (FMT_MSA.1) and
(FMT_SMR.1)

FMT_MSA.1/JCVM, FMT_SMR.1

FMT_SMF.1 No Dependencies

FMT_SMR.1 (FIA_UID.1) FIA_UID.2/AID

FCS_CKM.1 (FCS_COP.1) and
(FCS_CKM.4)

FCS_CKM.4, FCS_COP.1

FCS_CKM.4 (FCS_CKM.1 or FDP_ITC.1 or
FDP_ITC.2)

FCS_CKM.1

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 121/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

Requirements CC Dependencies Satisfied Dependencies

FCS_COP.1 (FCS_CKM.1 or FDP_ITC.1 or
FDP_ITC.2) and (FCS_CKM.4)

FCS_CKM.1, FCS_CKM.4

FCS_RNG.1 No Dependencies

FDP_RIP.1/ABORT No Dependencies

FDP_RIP.1/APDU No Dependencies

FDP_RIP.1/bArray No Dependencies

FDP_RIP.1/GlobalArray No Dependencies

FDP_RIP.1/KEYS No Dependencies

FDP_RIP.1/TRANSIENT No Dependencies

FDP_ROL.1/FIREWALL (FDP_ACC.1 or FDP_IFC.1) FDP_ACC.2/FIREWALL, FDP_IFC.1/JCVM

FAU_ARP.1 (FAU_SAA.1)

FDP_SDI.2/DATA No Dependencies

FPR_UNO.1 No Dependencies

FPT_FLS.1 No Dependencies

FPT_TDC.1 No Dependencies

FIA_ATD.1/AID No Dependencies

FIA_UID.2/AID No Dependencies

FIA_USB.1/AID (FIA_ATD.1) FIA_ATD.1/AID

FMT_MTD.1/JCRE (FMT_SMF.1) and
(FMT_SMR.1)

FMT_SMF.1, FMT_SMR.1

FMT_MTD.3/JCRE (FMT_MTD.1) FMT_MTD.1/JCRE

FCO_NRO.2/CM (FIA_UID.1) FIA_UID.1/CM

FDP_IFC.2/CM (FDP_IFF.1) FDP_IFF.1/CM

FDP_IFF.1/CM (FDP_IFC.1) and (FMT_MSA.3) FDP_IFC.2/CM, FMT_MSA.3/CM

FDP_UIT.1/CM (FDP_ACC.1 or FDP_IFC.1)
and (FTP_ITC.1 or FTP_TRP.1)

FDP_IFC.2/CM, FTP_ITC.1/CM

FIA_UID.1/CM No Dependencies

FMT_MSA.1/CM (FDP_ACC.1 or FDP_IFC.1)
and (FMT_SMF.1) and

(FMT_SMR.1)

FDP_IFC.2/CM, FMT_SMF.1/CM, FMT_SMR.1/CM

FMT_MSA.3/CM (FMT_MSA.1) and
(FMT_SMR.1)

FMT_MSA.1/CM, FMT_SMR.1/CM

FMT_SMF.1/CM No Dependencies

FMT_SMR.1/CM (FIA_UID.1) FIA_UID.1/CM

FTP_ITC.1/CM No Dependencies

FPT_TST.1 No Dependencies

FCO_NRO.2/CM_DAP (FIA_UID.1) FIA_UID.1/PP

FIA_AFL.1/CM (FIA_UAU.1) FIA_UAU.1/CM

FIA_UAU.1/CM (FIA_UID.1) FIA_UID.1/CM

FIA_UAU.4/CardIssuer No Dependencies

FIA_UAU.7/CardIssuer (FIA_UAU.1) FIA_UAU.1/CM

FPR_UNO.1/Key_CM No Dependencies

FPT_TDC.1/CM No Dependencies

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 122/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

Requirements CC Dependencies Satisfied Dependencies

FMT_SMR.2/CM (FIA_UID.1) FIA_UID.1/PP

FCS_COP.1/CM (FCS_CKM.1 or FDP_ITC.1 or
FDP_ITC.2) and (FCS_CKM.4)

FCS_CKM.1, FCS_CKM.4

FDP_ACC.2/PP (FDP_ACF.1) FDP_ACF.1/PP

FDP_ACF.1/PP (FDP_ACC.1) and
(FMT_MSA.3)

FDP_ACC.2/PP, FMT_MSA.3/PP

FDP_UCT.1/PP (FDP_ACC.1 or FDP_IFC.1)
and (FTP_ITC.1 or FTP_TRP.1)

FDP_ACC.2/PP, FTP_ITC.1/CM

FDP_ITC.1/PP (FDP_ACC.1 or FDP_IFC.1)
and (FMT_MSA.3)

FDP_ACC.2/PP, FMT_MSA.3/PP

FIA_AFL.1/PP (FIA_UAU.1) FIA_UAU.1/PP

FIA_UAU.1/PP (FIA_UID.1) FIA_UID.1/PP

FIA_UID.1/PP No Dependencies

FMT_MSA.1/PP (FDP_ACC.1 or FDP_IFC.1)
and (FMT_SMF.1) and

(FMT_SMR.1)

FDP_ACC.2/PP, FMT_SMF.1/PP, FMT_SMR.2/PP

FMT_SMF.1/PP No Dependencies

FIA_UAU.4/CardManu No Dependencies

FIA_UAU.7/CardManu (FIA_UAU.1) FIA_UAU.1/PP

FMT_MOF.1/PP (FMT_SMF.1) and
(FMT_SMR.1)

FMT_SMF.1/PP, FMT_SMR.2/PP

FMT_SMR.2/PP (FIA_UID.1) FIA_UID.1/PP

FMT_MSA.3/PP (FMT_MSA.1) and
(FMT_SMR.1)

FMT_MSA.1/PP, FMT_SMR.2/PP

FCS_COP.1/PP (FCS_CKM.1 or FDP_ITC.1 or
FDP_ITC.2) and (FCS_CKM.4)

FDP_ITC.1/PP, FCS_CKM.4/PP

FCS_CKM.4/PP (FCS_CKM.1 or FDP_ITC.1 or
FDP_ITC.2)

FDP_ITC.1/PP

FDP_UIT.1/PP (FDP_ACC.1 or FDP_IFC.1)
and (FTP_ITC.1 or FTP_TRP.1)

FDP_ACC.2/PP, FTP_ITC.1/CM

FCS_CKM.1/PP (FCS_COP.1) and
(FCS_CKM.4)

FCS_COP.1/PP, FCS_CKM.4/PP

FAU_STG.2 (FAU_GEN.1)

FPT_PHP.3/SCP No Dependencies

FPT_RCV.4/SCP No Dependencies

FRU_FLT.1/SCP (FPT_FLS.1) FPT_FLS.1

FPR_UNO.1/USE_KEY No Dependencies

FIA_AFL.1/PIN (FIA_UAU.1)

FMT_MTD.2/GP_PIN (FMT_MTD.1) and
(FMT_SMR.1)

FMT_MTD.1/PIN, FMT_SMR.2/CM

FMT_MTD.1/PIN (FMT_SMF.1) and
(FMT_SMR.1)

FIA_AFL.1/GP_PIN (FIA_UAU.1)

FDP_ACC.2/RV_Stack (FDP_ACF.1) FDP_ACF.1/RV_Stack

FDP_ACF.1/RV_Stack (FDP_ACC.1) and
(FMT_MSA.3)

FDP_ACC.2/RV_Stack, FMT_MSA.3/RV_Stack

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 123/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

Requirements CC Dependencies Satisfied Dependencies

FMT_MSA.1/RV_Stack (FDP_ACC.1 or FDP_IFC.1)
and (FMT_SMF.1) and

(FMT_SMR.1)

FMT_SMR.1, FDP_ACC.2/RV_Stack,
FMT_SMF.1/RV_Stack

FMT_MSA.2/RV_Stack (FDP_ACC.1 or FDP_IFC.1)
and (FMT_MSA.1) and
(FMT_SMR.1)

FMT_SMR.1, FDP_ACC.2/RV_Stack,
FMT_MSA.1/RV_Stack

FMT_MSA.3/RV_Stack (FMT_MSA.1) and
(FMT_SMR.1)

FMT_SMR.1, FMT_MSA.1/RV_Stack

FMT_SMF.1/RV_Stack No Dependencies

FDP_ACC.2/RV_Heap (FDP_ACF.1) FDP_ACF.1/RV_Heap

FDP_ACF.1/RV_Heap (FDP_ACC.1) and
(FMT_MSA.3)

FDP_ACC.2/RV_Heap, FMT_MSA.3/RV_Heap

FMT_MSA.1/RV_Heap (FDP_ACC.1 or FDP_IFC.1)
and (FMT_SMF.1) and

(FMT_SMR.1)

FMT_SMR.1, FDP_ACC.2/RV_Heap,
FMT_SMF.1/RV_Heap

FMT_MSA.2/RV_Heap (FDP_ACC.1 or FDP_IFC.1)
and (FMT_MSA.1) and
(FMT_SMR.1)

FMT_SMR.1, FDP_ACC.2/RV_Heap,
FMT_MSA.1/RV_Heap

FMT_MSA.3/RV_Heap (FMT_MSA.1) and
(FMT_SMR.1)

FMT_SMR.1, FMT_MSA.1/RV_Heap

FMT_SMF.1/RV_Heap No Dependencies

FDP_ACC.2/RV_Transient (FDP_ACF.1) FDP_ACF.1/RV_Transient

FDP_ACF.1/RV_Transient (FDP_ACC.1) and
(FMT_MSA.3)

FDP_ACC.2/RV_Transient,
FMT_MSA.3/RV_Transient

FMT_MSA.1/RV_Transient (FDP_ACC.1 or FDP_IFC.1)
and (FMT_SMF.1) and
(FMT_SMR.1)

FMT_SMR.1, FDP_ACC.2/RV_Transient,
FMT_SMF.1/RV_Transient

FMT_MSA.2/RV_Transient (FDP_ACC.1 or FDP_IFC.1)
and (FMT_MSA.1) and

(FMT_SMR.1)

FMT_SMR.1, FDP_ACC.2/RV_Transient,
FMT_MSA.1/RV_Transient

FMT_MSA.3/RV_Transient (FMT_MSA.1) and
(FMT_SMR.1)

FMT_SMR.1, FMT_MSA.1/RV_Transient

FMT_SMF.1/RV_Transient No Dependencies

Table 14 SFRs Dependencies

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 124/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

Rationale for the exclusion of Dependencies

The dependency FIA_UID.1 of FMT_SMR.1/Installer is discarded. This ST does not
require the identification of the "installer" since it can be considered as part of the TSF.

The dependency FIA_UID.1 of FMT_SMR.1/ADEL is discarded. This ST does not
require the identification of the "deletion manager" since it can be considered as part of the
TSF.

The dependency FMT_SMF.1 of FMT_MSA.1/JCRE is discarded. The dependency
between FMT_MSA.1/JCRE and FMT_SMF.1 is not satisfied because no management
functions are required for the Java Card RE.

The dependency FAU_SAA.1 of FAU_ARP.1 is discarded. The dependency of
FAU_ARP.1 on FAU_SAA.1 assumes that a "potential security violation" generates an audit
event. On the contrary, the events listed in FAU_ARP.1 are self-contained (arithmetic
exception, ill-formed bytecodes, access failure) and ask for a straightforward reaction of
the TSFs on their occurrence at runtime. The JCVM or other components of the TOE detect
these events during their usual working order. Thus, there is no mandatory audit recording
in this ST.

The dependency FAU_GEN.1 of FAU_STG.2 is discarded. The FAU_STG.2 is related to
the patch. When the identification of the patch is incorrect, the TOE rise a kill Card
exception. The FAU_GEN is then discarded as the card returns only the ATR. There is need
to store any audit function.

The dependency FIA_UAU.1 of FIA_AFL.1/PIN is discarded. The TOE implements the
firewall access control SFP, based on which access to the object implementing
FIA_AFL.1/PIN is organized.

The dependency FMT_SMF.1 of FMT_MTD.1/PIN is discarded. The TOE implements
the firewall access control of applications based on the AIDs.

The dependency FMT_SMR.1 of FMT_MTD.1/PIN is discarded. The TOE implements
the firewall access control of applications based on the AIDs.

The dependency FIA_UAU.1 of FIA_AFL.1/GP_PIN is discarded. The TOE implements
the firewall access control SFP, based on which access to the object implementing
FIA_AFL.1/GP_PIN is organized.

7.3.4.2 SARs Dependencies

Requirements CC Dependencies Satisfied Dependencies

ADV_ARC.1 (ADV_FSP.1) and (ADV_TDS.1) ADV_FSP.5, ADV_TDS.4

ADV_FSP.5 (ADV_IMP.1) and (ADV_TDS.1) ADV_IMP.1, ADV_TDS.4

ADV_IMP.1 (ADV_TDS.3) and (ALC_TAT.1) ADV_TDS.4, ALC_TAT.2

ADV_INT.2 (ADV_IMP.1) and (ADV_TDS.3) and (ALC_TAT.1) ADV_IMP.1, ADV_TDS.4, ALC_TAT.2

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 125/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

Requirements CC Dependencies Satisfied Dependencies

ADV_TDS.4 (ADV_FSP.5) ADV_FSP.5

AGD_OPE.1 (ADV_FSP.1) ADV_FSP.5

AGD_PRE.1 No Dependencies

ALC_CMC.4 (ALC_CMS.1) and (ALC_DVS.1) and (ALC_LCD.1) ALC_CMS.5, ALC_DVS.2, ALC_LCD.1

ALC_CMS.5 No Dependencies

ALC_DEL.1 No Dependencies

ALC_DVS.2 No Dependencies

ALC_LCD.1 No Dependencies

ALC_TAT.2 (ADV_IMP.1) ADV_IMP.1

ASE_CCL.1 (ASE_ECD.1) and (ASE_INT.1) and (ASE_REQ.1) ASE_ECD.1, ASE_INT.1, ASE_REQ.2

ASE_ECD.1 No Dependencies

ASE_INT.1 No Dependencies

ASE_OBJ.2 (ASE_SPD.1) ASE_SPD.1

ASE_REQ.2 (ASE_ECD.1) and (ASE_OBJ.2) ASE_ECD.1, ASE_OBJ.2

ASE_SPD.1 No Dependencies

ASE_TSS.1 (ADV_FSP.1) and (ASE_INT.1) and (ASE_REQ.1) ADV_FSP.5, ASE_INT.1, ASE_REQ.2

ATE_COV.2 (ADV_FSP.2) and (ATE_FUN.1) ADV_FSP.5, ATE_FUN.1

ATE_DPT.3 (ADV_ARC.1) and (ADV_TDS.4) and (ATE_FUN.1) ADV_ARC.1, ADV_TDS.4, ATE_FUN.1

ATE_FUN.1 (ATE_COV.1) ATE_COV.2

ATE_IND.2 (ADV_FSP.2) and (AGD_OPE.1) and (AGD_PRE.1) and
(ATE_COV.1) and (ATE_FUN.1)

ADV_FSP.5, AGD_OPE.1, AGD_PRE.1,
ATE_COV.2, ATE_FUN.1

AVA_VAN.5 (ADV_ARC.1) and (ADV_FSP.4) and (ADV_IMP.1) and
(ADV_TDS.3) and (AGD_OPE.1) and (AGD_PRE.1) and
(ATE_DPT.1)

ADV_ARC.1, ADV_FSP.5, ADV_IMP.1,
ADV_TDS.4, AGD_OPE.1, AGD_PRE.1,
ATE_DPT.3

Table 15 SARs Dependencies

7.3.5 Rationale for the Security Assurance Requirements

The ID-One COSMO V9.1 product claims a conformance to the Common Criteria level EAL5,
augmented with the component ALC_DVS.2 (sufficiency of security measures), AVA_VAN.5
(advanced methodical vulnerability analysis).

7.3.5.1 AVA_VAN.5 Advanced methodical vulnerability analysis

The TOE is intended to operate in hostile environments. AVA_VAN.5 "Advanced methodical
vulnerability analysis" is considered as the expected level for Java Card technology-based
products hosting sensitive applications, in particular in payment and identity areas. AVA_VAN.5
has dependencies on ADV_ARC.1, ADV_FSP.4, ADV_TDS.3, ADV_IMP.1, AGD_PRE.1,
AGD_OPE.1 and ATE_DPT.1. All of them are satisfied by EAL5.

7.3.5.2 ALC_DVS.2 Sufficiency of security measures

Development security is concerned with physical, procedural, personnel and other technical
measures that may be used in the development environment to protect the TOE and the
embedding product. The standard ALC_DVS.1 requirement mandated by EAL5 is not enough.
Due to the nature of the TOE and embedding product, it is necessary to justify the sufficiency
of these procedures to protect their confidentiality and integrity. ALC_DVS.2 has no
dependencies.

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 126/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

8 TOE Summary Specification

8.1 TOE Summary Specification

SF_ATOMIC_TRANSACTION

This TSF provides means to execute a sequence of modifications and allocations on the
persistent memory so that either all of them are completed, or the TOE behaves as if none
of them had been attempted. The transaction mechanism is used for updating internal TSF
data as well as for performing different functions of the TOE, like installing a new package
on the card. This TSF is also available for applet instances through the
javacard.framework.JCSystem, javacard.framework.Util and
javacardx.framework.util.ArrayLogic classes. The first class provides the applet instances
with methods for starting, aborting and committing a sequence of modifications of the
persistent memory. The other classes provide methods for atomically copying arrays. This
TSF ensures that the following data is never updated conditionally:

o The validated flag of the PINs

o The reason code of the CardException and CardRuntimeException

o Transient objects

o Global arrays, like the APDU buffer and the buffer that the applet instances use to
store installation data

o Any intermediate result state in the implementation instance of the Checksum,
Signature, Cipher, and Message Digest classes of the Java Card API.

This TSF is in charge of setting back the state of the persistent memory as it was before
they were started, when the following operations specified are not completed:

o Loading and linking of a package

o Installing a new applet instance

o Deleting a package

o Deleting an applet instance

o Collecting unreachable objects

o Reading from and writing to a static field, instance field or array position

o Populating, updating or clearing a cryptographic key

o Modifying a PIN value

Upon deallocation of a resource from any reference to an object instance created during an
aborted transaction, any previous information content of the resource is made unavailable.

Finally, this TSF ensures that no transaction is in progress when a method of an applet
instance is invoked for installing, deselecting, selecting or processing an APDU sent to the
applet instance. Concerning memory limitations on the transaction journal, this TSF
guarantees that an exception is thrown when the maximal capacity is reached. The TSF
preserves a secure state when such limit is reached. Atomic Transactions are detailed in
the chapter Atomicity and Transactions of the [R7] and in the documentation associated to
the JCSystem class in the [R6].

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 127/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

SF_CARD_CONTENT_MANAGEMENT

This TSF ensures the following functionalities:

o Loading (Section 9.3.5 of [R12]): This function allows the addition of code to
mutable persistent memory in the card. During card content loading, this TSF
checks that the required packages are already installed on the card. If one of the
required packages does not exist, or if the version installed on the card is not binary
compatible with the version required, then the loading of the package is rejected.
Loading is also rejected if the version of the CAP format of the package is newer
than the one supported by the TOE. If any of those checks fails, a suitable error
message is returned to the CAD.

o Installation (Section 9.3.6 of [R12]): This function allows the Installer to create an
instance of a previously loaded Applet subclass and make it selectable. In order to
do this, the install() method of the Applet subclass is invoked using the context of
that new instance as the currently active context. If this method returns with an
exception, the exception is trapped and the smart card rolls back to the state before
starting the installation procedure.

o Deletion (Section 9.5 of [R12]): This function allows the Applet Deletion Manager
to remove the code of a package from the card, or to definitely deactivate an applet
instance, so that it becomes no longer selectable. This TSF performs physical
removal of those packages and applet data stored in NVRAM, while only logical
removal is performed for applets including in OS package in Flash. This TSF checks
that the package or applet actually exists, and that no other package or applet
depends on it for its execution. In this case, the entry of the package or applet is
removed from the registry, and all the objects on which they depend are garbage
collected. Otherwise, a suitable error is returned to the CAD. The deletion of the
Applet Deletion Manager, the Installer or any of the packages required for
implementing the Java Card platform Application Programming Interface (Java Card
API) is not allowed.

o Extradition (Section 9.4.1 of): This function allows the Installer to associate load
files or applet instances to a Security Domain different than their currently
associated Security Domain. It is also used to associate a Security Domain to
another Security Domain or to itself thus creating Security Domains hierarchies. If
this method returns with an exception, the exception is trapped and the smart card
rolls back to the state before starting the extradition procedure.

o Registry update (Section 9.4.2 of): This function allows the Installer to populate,
modify or delete elements of the Registry entry of applet instances. If this method
returns with an exception, the exception is trapped and the smart card rolls back
to the state before starting the extradition procedure.

SF_CARD_MANAGEMENT_ENVIRONMENT

This TSF is in charge of initializing and managing the internal data structures of the Card
Manager. During the initialization phase of the card, this TSF creates the Installer and the
Applet Deletion Manager and initializes their internal data structures. The internal data
structures of the Card Manager includes the Package and Applet Registries, which
respectively contains the currently loaded packages and the currently installed applet
instances, together with their associated AIDs. This TSF is also in charge of dispatching the
APDU commands to the applets instances installed on the card and keeping traces of which
are the currently active ones. It therefore handles sensitive TSF data of other security
functions, like the Firewall.

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 128/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

SF_CARDHOLDER_VERIFICATION

This TSF enables applet instances to authenticate the sender of a request as the true
cardholder. Applet instances have access to these services through the OwnerPIN class.
Cardholder authentication is performed using the following security attributes:

o A secret enabling to authenticate the cardholder

o The maximum number of consecutive unsuccessful comparison attempts that are
admitted

o A counter of the number of consecutive unsuccessful comparison attempts that
have been performed so far

o The current life cycle state of the secret (reference value). This state is always
updated, even if the modification is in the scope of an open transaction. Each time
an attempt is made to compare a value to the reference value, and prior to the
comparison being actually performed, if the reference is blocked, then the
comparison fails and the reference value is not accessed. Otherwise, the try counter
is decremented by one. This operation is always performed, even if it is in the scope
of an open transaction. If the comparison is successful, then the try counter is reset
to the try limit. When the try counter reaches zero, the reference enters into a
blocked state, and cannot be used until it is unblocked. Cardholder Verification
Method services are implemented to resist to environmental stress and glitches and
include measures for preventing information leakage through covert channels. In
particular, unsuccessful authentication attempts consume the same power and
execution time than successful ones. The Cardmanager uses the class OwnerPin to
provide the services to the Applet that want benefit of the Shared GP_PIN. The
SF_CARDHOLDER_VERIFICATION implements all Pin verifications: D.PIN, GP.PIN.

SF_CLEARING_OF_SENSITIVE_INFORMATION

This TSF clears all the data containers that hold sensitive information when that information
is no longer used or upon the allocation of the resource. This includes:

o The contents of the memory blocks allocated for storing class instances, arrays,
static field images and local variables, before allocating a fresh block

o The objects reclaimed by the Java Card VM garbage collector

o The code of the deleted packages

o The objects accessible from a deleted applet instance

o The content of the bArray argument of the Applet.install method after a new applet
instance is installed

o The content of CLEAR ON DESELECT transient objects owned by an applet instance
that has been deselected when no other applets from the same package are active
on the card

o The content of all transient objects after a card reset

o The contents of the cryptographic buffer after performing cryptographic operations

o The Reference to an object instance created during an aborted transaction

Application Note:

This function is in charge of clearing the information contained in the objects that are no
longer accessible from the installed packages and applet instances. Clearing is performed
on demand of an applet instance through the JCSystem.requestObjectDeletion() method.

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 129/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

SF_DAP_VERIFICATION

An Application Provider may require that its Application code to be loaded on the card is
checked for integrity and authen ticity. The DAP Verification privilege of the Application
Provider's Security Domain detailed in Section 9.2.1 of provides this service on behalf of an
Application Provider. A Controlling Authority may require that all Application code to be
loaded onto the card shall be checked for integrity and authenticity. The Mandated DAP
Verification privilege of the Controlling Authority's Security Domain detailed in Section 9.2.1
of provides this service on behalf of the Controlling Authority. The keys and algorithms to
be used for DAP Verification or Mandated DAP Verification are implicitly known by the
corresponding Security Domain.

SF_DATA_COHERENCY

As coherency of data should be maintained, and as power is provided by the CAD and might
be stopped at all moment (by tearing or attacks), a transaction mechanism is provided.
When updating data, before writing the new ones, the old ones are saved in a specific
memory area. If a failure appears, at the next start-up, if old data are valid in the transaction
area, the system restores them for staying in a coherent state.

SF_DATA_INTEGRITY

Some of the data in non volatile memory can be protected. Keys, PIN package and patch
code are protected with integrity value. When reading and writing operation, the integrity
value is checked and maintained valid. In case of incoherency, an exception is raised to
prevent the bad use of the data. SecureStore is a mean for protecting Java Card data in
integrity.

SF_ENCRYPTION_AND_DECRYPTION

This TSF provides the applet instances with mechanisms for encrypting and decrypting the
contents of a byte array.

The ciphering algorithms are available to the applets through the Cipher class of the Java
Card API, ISOSecureMessaging class and SecureChannel class. The length of the key to be
used for the ciphering operation is defined by the applet instance when the key is
generated. Before encrypting or decrypting the byte array, the TSF verifies that the
specified key has been previously initialized, and that is in accordance with the specified
ciphering algorithm (DES, RSA, etc). The TSF also checks that it has been provided with all
the information necessary for the encryption/decryption operation. Once the ciphering
operation is performed, the internal TSF data used for the operation like the ICV is cleared.
Ciphering operations are implemented to resist to environmental stress and glitches and
include measures for preventing information leakage through covert channels.

Mechanisms of encrypting and decrypting for Secure Messaging are available to the applets
through the SecureChannel (Global Platform Card 2.2 specification) and
ISOSecureMessaging (Proprietary API [R44]) classes.

SF_ENTITY_AUTHENTICATION/SECURE_CHANNEL

Off-card entity authentication is achieved by initiating a Secure Channel and provides
assurance to the card that it is communicating with an authenticated off-card entity. If any
step in the off-card authentication process fails, the process shall be restarted (i.e. new
session keys generated). The Secure Channel initiation and off-card entity authentication
implies the creation of session keys derived from card static key(s).

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 130/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

SF_EXCEPTION

In case of abnormal event: data unavailable on an allocation, illegal access to a data, the
system owns an internal mechanism that allows to stop the code execution and raise an
exception.

SF_FIREWALL

This TSF enforces the Firewall security policy and the information flow control policy at
runtime. The former policy controls object sharing between different applet instances, and
between applet instances and the Java Card RE. The latter policy controls the access to
global data containers shared by all applet instances. This TSF is enforced by the Java Card
platform Virtual Machine (Java Card VM). During the execution of an applet, the Java Card
VM keeps track of the applet instance that is currently performing an action. This
information is known as the currently active context. Two kinds of contexts are considered:
applet instances contexts and the Java Card RE context, which has special privileges for
accessing objects. The TSF makes no difference between instances of applets defined in
the same package: all of them belong to the same active context. On the contrary, instances
of applets defined in different packages belong to different contexts. Each object belongs
to the context that was active when the object was allocated. Initially, when the Java Card
VM is launched, the context corresponding to the applet instance selected for execution
becomes the first active context. Each time an instance method is invoked on an object, a
context switch is performed, and the owner of the object becomes the new active context.
On the contrary, the invocation of a static method does not entail a context switch. Before
executing a bytecode that accesses an object, the object's owner is checked against the
currently active context in order to determine if access is allowed. Access is determined by
the Firewall access control rules specified in the chapter Applet Isolation and Object Sharing
of the [R7]. Those rules enable controlled sharing of objects through interface methods
that the object's owner explicitly exports to other applet instances, and provided that the
object's owner explicitly accepts to share it upon request of the method's invoker.

SF_GP_DISPATCHER

While a Security Domain is selected, this function tests for every command, according to
the Security Domain life cycle state and the Card life cycle state, if security requirements
are needed (if a Secure Channel is required).

SF_HARDWARE_OPERATING

When needed, at each start up or before first use, a self test of each hardware functional
module is done, i.e.: DES, RSA, RNG implements a know calculus and checks if the result
is correct. When executing, external hardware event can be trigged to prevent attacks or
bad use. Temperature, frequency, voltage, light, glitch are considered as abnormal
environmental conditions and put the card in frozen state. The TOE shall monitor IC
detectors (e.g. out-of-range voltage, temperature, frequency, active shield, memory aging)
and shall provide automatic answers to potential security violations through interruption
routines that leave the device in a secure state.

The TOE with the IC has detectors of operational conditions. It shall resist to attackers with
high-attack potential according to [R11] characterisation, in particular, to leakage attacks,
intrusive (e.g. probing, fault injection) and non-intrusive (e.g. SPA, DPA, EMA) attacks,
operational conditions manipulation (voltage, clock, temperature, etc) and physical attacks
aiming at modification of the IC content or behaviour. To be compliant to related SUN
Protection Profile [R5], the off-card verifier is mandatory in this ST; however, this TOE runs

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 131/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

some additional verification at execution time. These verifications ensure that: 1. No read
accesses are made to Java Card System code, data belonging to another application, data
belonging to the Java Card System, 2. No write accesses are made to another application's
code, Java Card System code, another application's data Java Card System or API data, 3.
No execution of code is done from a method or from a method fragment belonging to
another package (including execution on arbitrary data).

SF_KEY_AGREEMENT

This TSF provides the applet instances with a mechanism for supporting key agreement
algorithms such as EC Diffie-Hellman [R27].

SF_KEY_DESTRUCTION

This TSF disables the use of a key both logically and physically. When a key is cleared, the
internal life cycle of the key container is moved to a state in which no operation is allowed.
Applet instances may invoke this TSF through the interfaces declared in the
javacard.security package of the Java Card API.

SF_KEY_GENERATION

This TSF enforces the creation and/or the oncard generation of all the cryptographic keys
of the card using the method specified in that SFR.

SF_KEY_MANAGEMENT

This function enables key sets management (PIN). It allows creating updating and deleting
key sets. It is used to load keys to the card. It also implements verification of Key sets
attributes: key lengths, key types... and enforces the loaded keys integrity

SF_AUTHENTICATION

The authentication at prepersonalisation phase by the manufacturer authentication, at use
phase by the card Issuer is mandatory at the beginning of a communication session prior
to any relevant data being transferred to the TOE. The user uses the random number
returned in the INITIALIZE AUTHENTICATION PROCESS Command APDU. EXTERNAL
AUTHENTICATE Command APDU is used to verify the cryptogram computed from the
challenge by the user (Manufacturer or card issuer).

The max number of unsuccessful authentication attempts (basically 3) is described on the
related FIA_AFL.1/PP.

SF_MESSAGE_DIGEST

This TSF provides the applet instances with a mechanism for generating an (almost) unique
value for a byte array content. That value can be used as a short representative of the
information contained in the whole byte array. The hashing algorithms are available to the
applets through the MessageDigest class of the Java Card API. Before generating the hash
value, the TSF verifies that it has been provided with all the information necessary for the
hashing operation. For those algorithms that do not pad the messages, the TSF checks that
the information is block aligned before computing its hash value.

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 132/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

SF_MEMORY_FAILURE

When using the non volatile memory, in case of a bad writing, internal mechanisms are
implemented to prevent an incoherency of the written data. In case of an impossible writing,
an exception is raised.

SF_PRE_PERSO_AND_PATCHING

This function is in charge of pre-initializing the internal data structures, loading the
configuration of the card and loading patch code, if needed. The patch contains its
identification elements that are used, during audit, to uniquely identify loaded code.

SF_RANDOM_NUMBER

This TSF provides to card manager, resident application, applets a mechanism for
generating challenges and key values. Random number generators are available to the
applets through the RandomData class of the Java Card API. Off-card entity authentication
is achieved through the process of initiating a Secure Channel and provides assurance to
the card that it is communicating with an authenticated off-card entity. If any step in the
off-card authentication process fails, the process shall be restarted (i.e. new session keys
generated). The Secure Channel initiation and off-card entity authentication implies the
creation of session keys derived from card static key(s).

SF_RESIDENT_APPLICATION_DISPATCHER

During prepersonalisation phase, this function tests for every command if manufacturer
authentication is required.

SF_RUNTIME_VERIFIER

This security functionality ensures the secure processing of information by ensuring the
following elements:

o Stack Control

o Heap Control

o Transient Control

Information on the processing is described on the related FDP_ACF.1.

SF_SECURITY_FUNCTIONS_OF_THE_IC

The TOE uses the security functions of the IC. The list of the security function is presented
in the ST lite of the IC component.

SF_SIGNATURE

This TSF provides the applet instances with a mechanism for generating an electronic
signature of a byte array content and verifying an electronic signature contained in a byte
array. An electronic signature is made of a hash value of the information to be signed
encrypted with a secret key. The verification of the electronic signature includes decrypting
the hash value and checking that it actually corresponds to the block of signed bytes.

The signature algorithms are available to the applets through the javacard.Signature class
of the Java Card API, ISOSecureMesssaging class and SecureChannel class. The length of
the key to be used for the signature is defined by the applet instance when the key is
created. Before generating the signature, the TSF verifies that the specified key is suitable

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 133/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

for the operation (secret keys for signature generation), that it has been previously
initialized, and that is in accordance with the specified signature algorithm (DES, RSA, etc).
The TSF also checks that it has been provided with all the information necessary for the
signature operation. For those algorithms that do not pad the messages, the TSF checks
that the information to be signed is block aligned before performing the signature operation.
Once the signature operation is performed, the internal TSF data used for the operation
like the ICV is cleared. Signature operations are implemented to resist to environmental
stress and glitches and include measures for preventing information leakage through covert
channels.

Mechanisms of signature for Secure Messaging are available to the applets through the
SecureChannel (Global Platform Card 2.2 specification) and ISOSecureMessaging
(Proprietary API) classes. The signature is included in Data Objects.

SF_UNOBSERVABILITY

This function assures that processing based on secure elements of the TOE does not reveal
any information on those elements. For example, observation of a PIN verification cannot
reveal the PIN value, observation a cryptographic computation cannot give information on
the key.

8.2 SFRs and TSS

8.2.1 SFRs and TSS - Rationale

CoreG_LC Security Functional Requirements

Firewall Policy

FDP_ACC.2/FIREWALL The access control policy is ensured by SF_FIREWALL, it controls
whether an instance of an applet class declared in a package (subject) may read, write or
execute an instance method (operations) of an object (object).

FDP_ACF.1/FIREWALL FIREWALL Security attribute based access control -which security
attributes is attached to which subject/object of the policy- is specified in the SF_FIREWALL.

FDP_IFC.1/JCVM This requirement is fulfilled by SF_FIREWALL, this TSF enforces the
information flow control rules of Firewall security policy. It controls whether an applet
instance or Java Card RE (subject) may store into persistent memory a reference of a global
shared data container (objects).

FDP_IFF.1/JCVM This requirement is fulfilled by SF_FIREWALL. This TSF controls
operations, based on current active context implemented in SF_FIREWALL.

FDP_RIP.1/OBJECTS This requirement is fulfilled by
SF_CLEARING_OF_SENSITIVE_INFORMATION. This TSF clears the contents of the freshly
allocated objects before releasing the object to the applet. On the TSF, memory is cleared
when the object is removed during Garbage Collection. All this TSFlead to garbage
collection.

FMT_MSA.1/JCRE This requirement is fulfilled by SF_FIREWALL. When an instance method
is applied to an object, this TSF is in charge of performing a context switch to the context
of the object's owner. The TSF is also in charge of dispatching the APDU commands to the

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 134/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

applets instances installed on the card and keeping trace of which are the currently active
ones.

FMT_MSA.1/JCVM This requirement is fulfilled by SF_FIREWALL. When an instance method
is applied to an object, this TSF is in charge of performing a context switch to the context
of the object's owner. The TSF is also in charge of dispatching the APDU commands to the
applets instances installed on the card and keeping traces of which are the currently active
ones.

FMT_MSA.2/FIREWALL_JCVM This requirement is fulfilled by SF_FIREWALL. When an
applet instance is selected for execution, this TSF initializes the currently active context with
(the context of) that instance. Applet selection includes the verification that the instance
actually exists on the card. Then, during the execution of the Java Card VM, this TSF
propagates that secure value the other security attributes involved in the Firewall policy
(object's owner).

FMT_MSA.3/FIREWALL This requirement is fulfilled by SF_FIREWALL. This TSF initializes
the security attributes of the Firewall and Java Card VM security policies when an applet
instance is selected for execution, when an instance method is invoked and when an object
is allocated. This TSF does not provide means for a subject to override those initial values.

FMT_MSA.3/JCVM This requirement is fulfilled by SF_FIREWALL. This TSF initializes the
security attributes of the Firewall and Java Card VM security policies when an applet
instance is selected for execution, when an instance method is invoked and when an object
is allocated. This TSF does not provide means for a subject to override those initial values.

FMT_SMF.1 This requirement is fulfilled by SF_CARD_CONTENT_MANAGEMENT. When an
instance method is applied to an object; this TSF is in charge of performing a context switch
to the context of the object's owner.

FMT_SMR.1 This requirement is fullfilled by SF_FIREWALL. This TSF uses a special value for
the currently active context that identifies the Java Card RE (JCRE) and Java Card VM
(JCVM).

Application Programming Interface

FCS_CKM.1 This requirement is fulfilled by SF_KEY_GENERATION. It enforces the creation
and/or the oncard generation of all the cryptographic keys of the card.

FCS_CKM.4 SF_KEY_DESTRUCTION fulfils this SFR, it enforces the destruction of all the
cryptographic keys of the card using the method specified in that SFR.

FCS_COP.1 This SFR is fulfilled by the following set of TSFs:

o All signature and verification operation by RSA, TDES and AES are fulfilled by
SF_SIGNATURE, also fulfilled by SF_KEY_AGREEMENT by providing the applet
instances with a mechanism for supporting key agreement algorithms such EC
Diffie-Hellman [R27].

o This requirement by using SF_ENCRYPTION_AND_DECRYPTION provides the
applet instances with a mechanism for encrypting and decrypting the contents of a
byte array.

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 135/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

o SF_SIGNATURE permits to hash functions with SHA-1, SHA-224, SHA-256, SHA-
384 and SHA-512. It is also fulfilled by SF_MESSAGE_DIGEST by providing applet
instances with a mechanism for generating an (almost) unique value for the
contents of a byte array. Also fulfilled by SF_KEY_AGREEMENT by providing the
applet instances with a mechanism for supporting key agreement algorithms such
as EC Diffie-Hellman [R27].

FCS_RNG.1 This SFR is fulfilledby the following TSF:

o SF_SECURITY_FUNCTIONS_OF_THE_IC: This TSF ensures that the security
functionalities from the chip are provided to the software, and in particular RNG
based on AIS31.

o SF_RANDOM_NUMBER: This TSF is in charge of providing random numbers.

FDP_RIP.1/ABORT Any reference to an object instance created during an aborted
transaction- see SF_ATOMIC_TRANSACTIONS- is cleaned by using
SF_CLEARING_OF_SENSITIVE_INFORMATION.

FDP_RIP.1/APDU The TSF SF_CLEARING_OF_SENSITIVE_INFORMATION enforces the
clearing of the previous contents of the APDU buffer before processing a new APDU.

FDP_RIP.1/bArray The TSF SF_CLEARING_OF_SENSITIVE_INFORMATION enforces the
clearing of the previous contents of the buffer containing the installation data of an applet
instance before installing a new one.

FDP_RIP.1/GlobalArray The TSF SF_CLEARING_OF_SENSITIVE_INFORMATION enforces
the clearing of the previous contents of the buffer. The array is no longer available to any
applet and is deleted and the memory in use by the array is cleared and reclaimed in the
next object deletion cycle.

FDP_RIP.1/KEYS In order to perform a cryptographic operation, the key involved in the
operation has to be copied out of its secure container into the cryptographic buffer of the
IC co-processor. This function is in charge of ensuring that such buffer is cleared
immediately after completing the operation, the clearing is done by
SF_CLEARING_OF_SENSITIVE_INFORMATION.

FDP_RIP.1/TRANSIENT This function is in charge of clearing the information contained in
the transient objects when a clearing event arrives (deselection or card reset), invoked by
SF_CLEARING_OF_SENSITIVE_INFORMATION.

FDP_ROL.1/FIREWALL This requirement is fulfilled by SF_ATOMIC_TRANSACTION. When
the operations specified are not completed, this TSF is in charge of setting back the state
of the persistent memory as it was before they were started. As required in chapter 7 of
the [R7] and the [R6], this TSF does not undo those modifications performed on the RAM,
like the modification of the APDU buffer, the installation buffer, the transient objects, the
try counters of the PINs and the reason code of the card exceptions. If the commit capacity
is reached, this TSF prevents any further modification of the persistent memory.

Card Security Management

FAU_ARP.1 This SFR is enforced by the following TSFs:

o The SF_FIREWALL throws an instance of the SecurityException class when an
attempt to violate a security policy rule is detected.

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 136/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

o The SF_EXCEPTION ensures that all cases of exceptions are thrown and managed
during javacard runtime environment execution.

FDP_SDI.2/DATA The TSF SF_DATA_INTEGRITY ensures integrity of PIN, Keys and
application code (package)(CRC 16). A loss of integrity increases killcard counter.

FPR_UNO.1 The TSF SF_UNOBSERVABILITY ensures no user is able to observe PIN values
when authentication of the cardholder.

FPT_FLS.1 This SFR is enforced by the following TSF:

o SF_ATOMIC_TRANSACTIONS: card tearing and power failures and abortion of a
transaction in an unexpected context

o SF_FIREWALL: violations of the Firewall access control rules,

o SF_CARD_CONTENT_MANAGEMENT: insufficient resources to install a package and
CAP file inconsistency errors.

o SF_CLEARING_OF_SENSITIVE_INFORMATION: ensures the erase of previous
information stored, like the flags of pin or reason code contained in the
CardException or CardRuntimeException.

FPT_TDC.1 This SFR is fulfilled by SF_CARD_MANAGEMENT_ENVIRONMENT. It interprets
cap files: bytes code and data arguments.

AID Management

FIA_ATD.1/AID This SFR is fulfilled by SF_CARD_CONTENT_MANAGEMENT: It controls the
addition of new entries in the Applet Registry. Each time a new entry is added, the TSF
controls that it contains the information specified in that SFR. This is done on package
loading and applet installation.

FIA_UID.2/AID The TSF SF_FIREWALL identifies the applet instance requesting access to
objects through the currently active context. Retrieving the currently active context always
precedes the execution of the bytecodes under the control of the Firewall, as this information
is required for checking the premises of its access control rules.

FIA_USB.1/AID The TSF SF_FIREWALL uses the security attribute introduced in the SFR to
check whether an applet instance (subject) representing an Application Provider (user) may
access an object through the firewall.

FMT_MTD.1/JCRE SF_CARD_CONTENT_MANAGEMENT fulfils this SFR, it controls the
creation of new applet instances on the card. Each time an applet instance is created, the
Installer adds an entry for it in the Applet Registry

FMT_MTD.3/JCRE This SFR is fulfilled by SF_CARD_CONTENT_MANAGEMENT: it controls
that only secure values are assigned as attributes of an applet instance. Invalid AIDs for
the applet instances, like an AID that is already in use, are also rejected

InstG Security Functional Requirements

FDP_ITC.2/Installer This SFR is implemented by SF_CARD_CONTENT_MANAGEMENT: The
SF ensures safe package loading and applet installation process. It modifies the CAP files

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 137/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

to produce the TOE intern representation of the loaded package. It also performs coherency
checks on the CAP files and verifies the export references.

FMT_SMR.1/Installer This SFR is implemented by SF_CARD_CONTENT_MANAGEMENT:
The TSF is in charge of creating the applet instance that plays the role of the Applet
Installation Manager.

FPT_FLS.1/Installer This SFR is fulfilled by the following TSFs:

o The SF_CARD_CONTENT_MANAGEMENT: is in charge of checking that all the
conditions for safely installing a package or an applet instance are fulfilled during
the installation procedure. If conditions cannot be verified the installation is deemed
unsuccessful and either an exception is thrown or the card is frozen, depending of
the failure severity. Card tearing or reset also cause an installation failure.

o SF_ATOMIC_TRANSACTIONS is in charge of rolling back to a secure state when the
installation of a package or an applet instance is aborted

o This function is in charge of clearing the information contained in the packages that
is not necessary for the execution of the code of the applet invoked by
SF_CLEARING_OF_SENSITIVE_INFORMATION.

FPT_RCV.3/Installer This SFR is fulfilled by the following TSFs:

o SF_CARD_CONTENT_MANAGEMENT: In case of severe failure during package or
applet installation, the card is frozen (KillCard). Such failures (for example the
loading of a CAP file with an invalid format) are considered as security problems.
The maintenance mode is represented by the frozen state of the card. The secure
state is then reached on next card reset where Garbage Collector is launch to
retrieve lost memory and where the transaction mechanism allows retrieving the
initial state.

o SF_ATOMIC_TRANSACTION: The TSF is in charge of rolling back to a secure state
when the installation of a package or an applet instance is aborted.

ADELG Security Functional Requirements

FDP_ACC.2/ADEL The access control policy for deletion is made by
SF_CARD_CONTENT_MANAGEMENT, it controls whether the Applet Deletion Manager
(subject) may delete (operation) a package or an applet instance (object).

FDP_ACF.1/ADEL The access control policy for deletion is made by
SF_CARD_CONTENT_MANAGEMENT, it controls whether the Applet Deletion Manager
(subject) may delete (operation) a package or an applet instance (object).

FDP_RIP.1/ADEL The TSF SF_CLEARING_OF_SENSITIVE_INFORMATION renders
inaccessible the code of a deleted package and the class instances and arrays allocated by
a deleted applet instance.

FMT_MSA.1/ADEL The ADEL access policy is implemented in
SF_CARD_CONTENT_MANAGEMENT, this TSF keeps track of which applet instances are
currently active on which logical channels. Only the Card Manager (which in [R5] is
identified with the Java Card RE role) is allowed to associate or remove the association

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 138/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

between an applet instance and a logical channel. These actions are performed as part of
command dispatching

FMT_MSA.3/ADEL The SF_CARD_CONTENT_MANAGEMENT enforces the assignment of
restrictive values for the security attributes of the Applet Deletion policy.

FMT_SMF.1/ADEL Modifying the active applet security context is done by
SF_CARD_MANAGEMENT_ENVIRONMENT, it's allowed to card manager.

FMT_SMR.1/ADEL This SFR is fulfilled by SF_CARD_MANAGEMENT_ENVIRONMENT: it
keeps track of which applet instances are currently active on which logical channels. Only
the Card Manager is allowed to associate or remove the association between an applet
instance and a logical channel.

FPT_FLS.1/ADEL This SFR is ensured by the following TSFs:

o SF_CARD_CONTENT_MANAGEMENT is in charge of checking that all the conditions
for safely deleting a package or an applet instance are fulfilled before starting the
deletion procedure.

o SF_ATOMIC_TRANSACTION: This TSF is in charge of rolling back to a secure state
when the deletion of a package or an applet instance is aborted.

o SF_CLEARING_OF_SENSITIVE_INFORMATION: is in charge of checking that all the
conditions for safely deleting a package or an applet instance are fulfilled before
starting the deletion procedure.

ODELG Security Functional Requirements

FDP_RIP.1/ODEL This SFR is met by SF_CLEARING_OF_SENSITIVE_INFORMATION: This
TSF renders inaccessible the code of a deleted package and the class instances and arrays
allocated by a deleted applet instance.

FPT_FLS.1/ODEL The TSF SF_CLEARING_OF_SENSITIVE_INFORMATION is in charge of
checking that all the conditions for safely deleting a package or an applet instance are
fulfilled before starting the deletion procedure.

CarG Security Functional Requirements

Miscellaneous

FCO_NRO.2/CM During the loading phase, the SF_CARD_CONTENT_MANAGEMENT:
controls card content loading, it verifies the proof of the origin of the Load File. Before to
start the loading, the open checks that the user is authenticated, checks the presence of
the < DAPBlock > in the < LoadFile >, requires the Security Domain Verifier to verify it.

FDP_IFC.2/CM The rule of the package loading flow control policy is specified by
SF_CARD_CONTENT_MANAGEMENT: it verifies that all the loading commands are issued in
the Secure Channel session. It compares the Load File Data Block Hash present in the

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 139/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

command install for load against the received. It also requires the Dap verification of all
entities committed in the loading phase, ensured by SF_DAP_VERIFICATION.

FDP_IFF.1/CM This SFR is implemented by SF_DAP_VERIFICATION, it controls the
communication protocol used by the CAD and the card for transmitting packages. The SFR
is also implemented in the SF_CARD_CONTENT_MANAGEMENT to ensure the access control
policy for the loading of the packages.

FDP_UIT.1/CM This SFR is implemented by SF_DAP_VERIFICATION, it controls imported
data from modification, deletion, insertion, replay of some of the pieces of the application
sent by the CAD. The verification is made by using: Encryption and decryption operations
by SF_ENCRYPTION_AND_DECRYPTION function.

FIA_UID.1/CM The TSF SF_GP_DISPATCHER met this SFR: While the Card manager (ISD)
or Supplementary Security domain is selected, these functions test for every command if
the secure channel is open. When the secure channel is not open then only these commands
are available: Get data and Initialize Update. The initialize Update returns to the user the
key set version, Secure Channel identifier and the card random and the card cryptogram.

FMT_MSA.1/CM This SFR is implemented by two security functions:

o SF_KEY_MANAGEMENT: This TSF controls that only the CM can modify its key set
and can change the card life cycle and set the default application.

o SF_CARD_CONTENT_MANAGEMENT: This TSF controls whether the active entity
has the privilege and the pre-authorization for make the Card Content
Management operations, and that operation still available on the card. Its controls
also that the card state allows the operations.

FMT_MSA.3/CM The TSF SF_CARD_CONTENT_MANAGEMENT provides the way to lock the
Security Domain with Authorized Management privilege in order to restrict its card content
management ability. This TSF provides also to disable permanently the Card Content
Management operations for all entities on the card.

FMT_SMF.1/CM The TSF SF_CARD_CONTENT_MANAGEMENT controls whether the active
entity has the privilege and the pre-authorization for making the Card Content Management
operations - modify security attributes. -, and that operation still available on the card. Its
controls also that the card state allows the operations.

FMT_SMR.1/CM The TSF SF_CARD_CONTENT_MANAGEMENT verifies that authentication is
successful and the active entity has loading privilege (Authorized Management privilege)
before processes any Card Content management command. The successful authentication
proves the user identity and role.

FTP_ITC.1/CM Installing a new package is verified by SF_CARD_CONTENT_MANAGEMENT:
the SF_GP_DISPATCHER tests if secure channel is required, and verification is made by
SF_DAP_VERIFICATION.

Additional Security Functional Requirements for CM

FPT_TST.1 This SFR is supported by the following TSFs:

o SF_HARDWARE_OPERATING: At each start up, security function
SF_Hardware_Operating is done. Random, DES, and CRC functional modules
systematically tested: a known calculus is implemented and the result is checked.

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 140/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

SHA, RSA, AES and ECC functional modules are tested at each start up or at first
use, using the same method.

o SF_DATA_INTEGRITY: At each start up, the entire NVM integrity, so executable
code, is checked. The NVM integrity is updated after patch loading so the next
startup does not rise a kill card exception.

FCO_NRO.2/CM_DAP During the loading phase, SF_DAP_VERIFICATION verifies the proof
of the origin of the Load File. Before to start the loading, the open checks that the user is
authenticated, checks the presence of the < DAPBlock > in the < LoadFile >, requires the
Security Domain Verifier to verify it.

FIA_AFL.1/CM This Requirement is fulfilled by
SF_ENTITY_AUTHENTICATION/SECURE_CHANNEL. It tests the result of authentication.
By default the authentication result is assumed unsuccessful, so the authentication failure
is recorded, the associated counter and the slowdown counter are incremented. If the
authentication is successful, the authentication failure counter is decremented and the
slowdown counter is reset.

FIA_UAU.1/CM This SFR is fulfilledby the following TSFs:

o SF_GP_DISPATCHER: While the Card manager (ISD) or Supplementary Security
domain is selected, these functions test for every command by
SF_GP_DISPATCHER if the secure channel is open.

o SF_ENTITY_AUTHENTICATION/SECURE_CHANNEL: When the secure channel is
not open then only the command available are Get Data, Initialize Update, Select.

FIA_UAU.4/CardIssuer Present the use of CardIssuer authentication, function
implemented in SF_ENTITY_AUTHENTICATION/SECURE_CHANNEL, is given by using a
RNG defined in SF_RANDOM_NUMBER.

FIA_UAU.7/CardIssuer This SFR is fulfilled by the following TSFs:

o SF_ENTITY_AUTHENTICATION/SECURE_CHANNEL: It uses the key set version,
Secure channel identifier and the card random and the card cryptogram for
authentication.

o SF_RANDOM_NUMBER: It permits CardIssuer Protected authentication feedback,
no other information is given while the authentication is in progress.

FPR_UNO.1/Key_CM Import of keys are not observable by all subjects. This requirement is
ensured by SF_KEY_MANAGEMENT and SF_UNOBSERVABILITY.

FPT_TDC.1/CM Key set and packages when imported are consistently interpreted by
implementation of SF_KEY_MANAGEMENT.

FMT_SMR.2/CM The TSF SF_ENTITY_AUTHENTICATION/SECURE_CHANNEL verifies that
authentication is successful and the active entity has loading privilege before processes any

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 141/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

Card Content management command. The successful authentication proves the user
identity and role.

FCS_COP.1/CM The TSF SF_ENTITY_AUTHENTICATION/SECURE_CHANNEL covers this
SFR. It requires the cryptographic operations for the creation and management of secure
channel. The TSF SF_ENCRYPTION_AND_DECRYPTION provides a mechanism for
encrypting and decrypting the contents of a byte array.

Additional Security Functional Requirements for Resident application

FDP_ACC.2/PP The SFR is fulfilled by the following TSFs:

o SF_RESIDENT_APPLICATION_DISPATCHER: This TSF implements Access control
policy for the resident application,

o SF_AUTHENTICATION: This TSF is in charge of the card manufacturer
authentication and Card Issuer for patch loading.

o SF_PRE_PERSO_AND_PATCHING: This TSF is in charge of the prepersonalisation
and the patch loading.

These TSFs control all access to all objects and all operations.

FDP_ACF.1/PP This SFR is met by the following TSFs:

o SF_AUTHENTICATION: The rules garanting access rights are made by SF
_AUTHENTICATION, it guarantees once the Prepersonalisation or the
personalisation or the card issuer is authenticated, the card verifies for each action
that the authentication is successful.

o SF_PRE_PERSO_AND_PATCHING: This TSF is in charge of the prepersonalisation
and the patch loading.

FDP_UCT.1/PP This SFR is met by the following TSFs:

o SF_AUTHENTICATION: It controls the access to patch loading function.

o SF_PRE_PERSO_AND_PATCHING: This TSF is in charge of the prepersonalisation
and the patch loading.

FDP_ITC.1/PP The SFR is fulfilled by the following TSFs:

o SF_AUTHENTICATION enables trusted channel establishment thanks to
authentication with the MSK/LSK and allows the prepersonalisation and the patch
loading.

o SF_PRE_PERSO_AND_PATCHING enables to load patches.

o SF_RESIDENT_APPLICATION_DISPATCHER During prepersonalisation phase, this
function tests for every command if manufacturer authentication is required.

FIA_AFL.1/PP The SFR is fulfilled by the following TSFs:

o SF_AUTHENTICATION: After 3 consecutive unsuccessful authentications a status
error is always returned by the card.

o SF_PRE_PERSO_AND_PATCHING enables to load patches.

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 142/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

FIA_UAU.1/PP The SFR is met by the following TSFs:

o SF_RESIDENT_APPLICATION_DISPATCHER: The set of command (INITIALIZE
AUTHENTICATION PROCESS, GET DATA, MANAGE CHANNEL, SELECT APPLET) of
the resident application can be performed without authentication.

o SF_PRE_PERSO_AND_PATCHING enables to load patches.

FIA_UID.1/PP This SFR is fulfilledby the following TSFs:

o SF_RESIDENT_APPLICATION_DISPATCHER: The set of command (INITIALIZE
AUTHENTICATION PROCESS, GET DATA, MANAGE CHANNEL, SELECT APPLET) of
the resident application can be performed without authentication.

o SF_PRE_PERSO_AND_PATCHING enables to load patches.

FMT_MSA.1/PP This SFR is fulfilledby the following TSFs:

o SF_AUTHENTICATION: The MSK keys of the Card Manufacturer can be modified in
Prepersonalisation phase after a successful authentication with the MSK.

o SF_PRE_PERSO_AND_PATCHING: This TSF is in charge of the prepersonalisation
and the patch loading.

FMT_SMF.1/PP This SFR is fulfilled by the following TSFs:

o SF_AUTHENTICATION: The MSK keys of the Card Manufacturer can be modified in
Prepersonalisation phase after a successful authentication with the MSK.

o SF_PRE_PERSO_AND_PATCHING: This TSF is in charge of the prepersonalisation
and the patch loading.

FIA_UAU.4/CardManu This SFR is fulfilled by the following TSF:

o SF_AUTHENTICATION: Prevents from Card Manufacturer authentication reuse
during prepersonalisation

FIA_UAU.7/CardManu This SFR is fulfilled by the following TSF:

o SF_AUTHENTICATION: During authentication, the command "INITIALIZE
AUTHENTICATION PROCESS" is used to provide a random number implemented
by the SF_RANDOM_NUMBER. Only Random number and NOK as result of
authentication are provided to the user.

FMT_MOF.1/PP This SFR is fulfilled by the following TSFs:

o SF_PRE_PERSO_AND_PATCHING: This function permits the Prepersonalisation and
the patch loading.

o SF_RESIDENT_APPLICATION_DISPATCHER: During prepersonalisation phase, this
function tests for every command if manufacturer authentication is required as
commands used to load patches on the card.

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 143/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

FMT_SMR.2/PP This SFR is fulfilled by the following TSFs:

o SF_PRE_PERSO_AND_PATCHING: This function permits the Prepersonalisation
phase and the patch loading.

o SF_AUTHENTICATION: After a successful authentication (of Card Manufacturer)
using MSK, the TSF and card stay still in Prepersonalisation state.

o SF_RESIDENT_APPLICATION_DISPATCHER: During prepersonalisation phase, this
function tests for every command according to the life cycle of the resident
application

FMT_MSA.3/PP This SFR is fulfilledby the following TSFs:

o SF_AUTHENTICATION: This TSF implements Access control policy in preperso,
personalization and use phase.

o SF_PRE_PERSO_AND_PATCHING: This TSF implements prepersonalisations
operations and loading patches in personalization and use phases.

FCS_COP.1/PP At prepersonalisation phase, authentication cryptogram (signature
computation and verification) are used by SF_AUTHENTICATION. Data decryption (of patch
or keys), integrity pattern verification (signature/MAC) are used by
SF_PRE_PERSO_AND_PATCHING. Encrypted and decrypted data in bytes arrays are
manipulated using SF_ENCRYPTION_AND_DECRYPTION. These functions call
Cryptographic ones defined in previous FCS_COP operation SF_AUTHENTICATION: This
TSF implements Access control policy in preperso phase.

FCS_CKM.4/PP This SFR is fulfilled by the following TSFs:

o SF_KEY_DESTRUCTION: As soon as the Card Manager status is set to OP_READY,
the MSK and LSK key is set to null (as the checksum is also to null) the key is not
useful. The MSK after the first use is diversified, according to AGD_PRE [R33]. The
new version of the key replaces the previous one.

o SF_PRE_PERSO_AND_PATCHING: This function permits the Prepersonalisation and
the patch loading.

FDP_UIT.1/PP The SFR is fulfilled by the following TSF:

o SF_PRE_PERSO_AND_PATCHING: The data (patch) sent to the TOE are protected
in integrity thanks to a signature computed by the TOE developer with the
dedicated key (LSK, MSK, JSK).

FCS_CKM.1/PP The SFR is fulfilled by the following TSFs:

o SF_KEY_GENERATION: During first command, the individual MSK of the TOE is
generated from the master MSK.

o SF_PRE_PERSO_AND_PATCHING: This function permits the Prepersonalisation and
the patch loading.

FAU_STG.2 The SFR is fulfilled by the following TSF:

o SF_PRE_PERSO_AND_PATCHING: Upon request, the identification of the patch is
returned.

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 144/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

Additional Security Functional Requirements for Smart Card Platform

FPT_PHP.3/SCP When executing, SF_HARDWARE_OPERATING shall resist changing
operational conditions every times, external hardware event can be trigged to prevent
attacks or bad use. Temperature, frequency, voltage, light, glitch are considered as
abnormal environmental conditions and put the card in frozen state.

FPT_RCV.4/SCP The TSF SF_DATA_COHERENCY shall ensure that reading from and writing
to static and objects' fields interrupted by power loss have the property that the function
either completes successfully, or for the indicated failure scenarios, recovers to a consistent
and secure state.

FRU_FLT.1/SCP When there is a failure of FLASH, in case of a bad writing, the
SF_MEMORY_FAILURE implements internal mechanisms to prevent an incoherency of the
written data. In case of an impossible writing, an exception is raised.

FPR_UNO.1/USE_KEY This SFR is implemented by the following TSF:

o SF_UNOBSERVABILITY: No user are able to observe keys whether the keys are in
use.

Additional Security Functional Requirements for the applets

FIA_AFL.1/PIN This SFR is implemented by the following TSF:

o SF_CARDHOLDER_VERIFICATION: The TSF detects that the number of PIN
presentations exceeds the maximum value previously configured. It blocks the PIN
in this case. The entire OwnerPin class in involved in the process since it is used to
set the PIN size and the maximum of successful tries, to verify the PIN, to reset the
validation flag.

FMT_MTD.2/GP_PIN This SFR is implemented by the following TSF:

o SF_CARDHOLDER_VERIFICATION: The TOE ensures that the GlobalPin is blocked
when its associated PIN try counter at reach the PIN try limit value.

FMT_MTD.1/PIN The SFR is implemented by the following TSF:

o SF_CARDHOLDER_VERIFICATION provides a complete PIN mechanism:
change_default, query and modify to applets.

FIA_AFL.1/GP_PIN This SFR is implemented by the following TSF:

o SF_CARDHOLDER_VERIFICATION: The TOE checks that only the Card Manager
and privileged application can change the pin try limit and Update the global Pin.

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 145/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

Additional Security Functional Requirements for Runtime Verification

Stack Control

FDP_ACC.2/RV_Stack This SFR is implemented by the following TSF:

o SF_RUNTIME_VERIFIER: The SF implements a complete access control on the
Stack operations.

FDP_ACF.1/RV_Stack This SFR is implemented by the following TSF:

o SF_RUNTIME_VERIFIER: This SFR enforces the access conditions which guarantee
the protection of the Stack.

FMT_MSA.1/RV_Stack This SFR is implemented by the following TSF:

o SF_RUNTIME_VERIFIER: This TSF implements the management of the security
attributes.

FMT_MSA.2/RV_Stack This SFR is implemented by the following TSF:

o SF_RUNTIME_VERIFIER: This TSF ensures that only secure values for the attributes
are accepted

FMT_MSA.3/RV_Stack This SFR is implemented by the following TSF:

o SF_RUNTIME_VERIFIER: This TSF implements the initialisation of the attributes of
the access control policy.

FMT_SMF.1/RV_Stack This SFR is implemented by the following TSF:

o SF_RUNTIME_VERIFIER: The TSF specify the management function to modify the
stack pointer. It controls the Stack and is able to change the associated parameter.

Heap Access

FDP_ACC.2/RV_Heap This SFR is implemented by the following TSF:

o SF_RUNTIME_VERIFIER: it implements the access control to the Heap.,

FDP_ACF.1/RV_Heap This SFR is implemented by the following TSF:

o SF_RUNTIME_VERIFIER: it ensures the access conditions to the Heap.

FMT_MSA.1/RV_Heap This SFR is implemented by the following TSF:

o SF_RUNTIME_VERIFIER: This TSF implements the management of the modification
of the security attributes of the access control to the Heap.

FMT_MSA.2/RV_Heap This SFR is implemented by the following TSF:

o SF_RUNTIME_VERIFIER: This TSF implements the control that only security values
are accepted for the security attributes.

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 146/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

FMT_MSA.3/RV_Heap This SFR is implemented by the following TSF:

o SF_RUNTIME_VERIFIER: This TSF implements initialisation of the security
attributes.

FMT_SMF.1/RV_Heap This SFR is implemented by the following TSF:

o SF_RUNTIME_VERIFIER: The TSF directly controls the Heap and is able to change
the associated parameter.

Transient Control

FDP_ACC.2/RV_Transient This SFR is implemented by the following TSF:

o SF_RUNTIME_VERIFIER: it implements the access control to guarantee the
protection of Transient objects.

FDP_ACF.1/RV_Transient This SFR is implemented by the following TSF:

o SF_RUNTIME_VERIFIER: it implements access conditions and defines the security
rules which guarantee the protection of Transient objects.

FMT_MSA.1/RV_Transient This SFR is implemented by the following TSF:

o SF_RUNTIME_VERIFIER: This TSF implements the management of the security
attributes for the access control to the transient.

FMT_MSA.2/RV_Transient This SFR is implemented by the following TSF:

o SF_RUNTIME_VERIFIER: This TSF implements the condition that only secure
attributes are accepted for the access control policy to the Transient.

FMT_MSA.3/RV_Transient This SFR is implemented by the following TSF:

o SF_RUNTIME_VERIFIER: This TSF controls that only restrictive values are accepted
for security attributes used to enforce the transient access control policy.

FMT_SMF.1/RV_Transient This SFR is implemented by the following TSF:

o SF_RUNTIME_VERIFIER: The TSF directly controls the Transient and is able to
change the associated parameter.

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 147/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

8.2.2 Association tables of SFRs and TSS

Security Functional Requirements TOE Summary Specification

FDP_ACC.2/FIREWALL SF_FIREWALL

FDP_ACF.1/FIREWALL SF_FIREWALL

FDP_IFC.1/JCVM SF_FIREWALL

FDP_IFF.1/JCVM SF_FIREWALL

FDP_RIP.1/OBJECTS SF_CLEARING_OF_SENSITIVE_INFORMATION

FMT_MSA.1/JCRE SF_FIREWALL

FMT_MSA.1/JCVM SF_FIREWALL

FMT_MSA.2/FIREWALL_JCVM SF_FIREWALL

FMT_MSA.3/FIREWALL SF_FIREWALL

FMT_MSA.3/JCVM SF_FIREWALL

FMT_SMF.1 SF_CARD_CONTENT_MANAGEMENT

FMT_SMR.1 SF_FIREWALL

FCS_CKM.1 SF_KEY_GENERATION

FCS_CKM.4 SF_KEY_DESTRUCTION

FCS_COP.1 SF_KEY_AGREEMENT, SF_MESSAGE_DIGEST,
SF_ENCRYPTION_AND_DECRYPTION, SF_SIGNATURE

FCS_RNG.1 SF_SECURITY_FUNCTIONS_OF_THE_IC, SF_RANDOM_NUMBER

FDP_RIP.1/ABORT SF_CLEARING_OF_SENSITIVE_INFORMATION,

SF_ATOMIC_TRANSACTION

FDP_RIP.1/APDU SF_CLEARING_OF_SENSITIVE_INFORMATION

FDP_RIP.1/bArray SF_CLEARING_OF_SENSITIVE_INFORMATION

FDP_RIP.1/GlobalArray SF_CLEARING_OF_SENSITIVE_INFORMATION

FDP_RIP.1/KEYS SF_CLEARING_OF_SENSITIVE_INFORMATION

FDP_RIP.1/TRANSIENT SF_CLEARING_OF_SENSITIVE_INFORMATION

FDP_ROL.1/FIREWALL SF_ATOMIC_TRANSACTION

FAU_ARP.1 SF_FIREWALL, SF_EXCEPTION

FDP_SDI.2/DATA SF_DATA_INTEGRITY

FPR_UNO.1 SF_UNOBSERVABILITY

FPT_FLS.1 SF_ATOMIC_TRANSACTION, SF_FIREWALL,
SF_CARD_CONTENT_MANAGEMENT,
SF_CLEARING_OF_SENSITIVE_INFORMATION

FPT_TDC.1 SF_CARD_MANAGEMENT_ENVIRONMENT

FIA_ATD.1/AID SF_CARD_CONTENT_MANAGEMENT

FIA_UID.2/AID SF_FIREWALL

FIA_USB.1/AID SF_FIREWALL

FMT_MTD.1/JCRE SF_CARD_CONTENT_MANAGEMENT

FMT_MTD.3/JCRE SF_CARD_CONTENT_MANAGEMENT

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 148/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

Security Functional Requirements TOE Summary Specification

FDP_ITC.2/Installer SF_CARD_CONTENT_MANAGEMENT

FMT_SMR.1/Installer SF_CARD_CONTENT_MANAGEMENT

FPT_FLS.1/Installer SF_ATOMIC_TRANSACTION, SF_CARD_CONTENT_MANAGEMENT,
SF_CLEARING_OF_SENSITIVE_INFORMATION

FPT_RCV.3/Installer SF_ATOMIC_TRANSACTION, SF_CARD_CONTENT_MANAGEMENT

FDP_ACC.2/ADEL SF_CARD_CONTENT_MANAGEMENT

FDP_ACF.1/ADEL SF_CARD_CONTENT_MANAGEMENT

FDP_RIP.1/ADEL SF_CLEARING_OF_SENSITIVE_INFORMATION

FMT_MSA.1/ADEL SF_CARD_CONTENT_MANAGEMENT

FMT_MSA.3/ADEL SF_CARD_CONTENT_MANAGEMENT

FMT_SMF.1/ADEL SF_CARD_MANAGEMENT_ENVIRONMENT

FMT_SMR.1/ADEL SF_CARD_MANAGEMENT_ENVIRONMENT

FPT_FLS.1/ADEL SF_CARD_CONTENT_MANAGEMENT, SF_ATOMIC_TRANSACTION,
SF_CLEARING_OF_SENSITIVE_INFORMATION

FDP_RIP.1/ODEL SF_CLEARING_OF_SENSITIVE_INFORMATION

FPT_FLS.1/ODEL SF_CLEARING_OF_SENSITIVE_INFORMATION

FCO_NRO.2/CM SF_CARD_CONTENT_MANAGEMENT

FDP_IFC.2/CM SF_CARD_CONTENT_MANAGEMENT, SF_DAP_VERIFICATION

FDP_IFF.1/CM SF_CARD_CONTENT_MANAGEMENT, SF_DAP_VERIFICATION

FDP_UIT.1/CM SF_DAP_VERIFICATION, SF_ENCRYPTION_AND_DECRYPTION

FIA_UID.1/CM SF_GP_DISPATCHER

FMT_MSA.1/CM SF_CARD_CONTENT_MANAGEMENT, SF_KEY_MANAGEMENT

FMT_MSA.3/CM SF_CARD_CONTENT_MANAGEMENT

FMT_SMF.1/CM SF_CARD_CONTENT_MANAGEMENT

FMT_SMR.1/CM SF_CARD_CONTENT_MANAGEMENT

FTP_ITC.1/CM SF_CARD_CONTENT_MANAGEMENT, SF_DAP_VERIFICATION,
SF_GP_DISPATCHER

FPT_TST.1 SF_HARDWARE_OPERATING, SF_DATA_INTEGRITY

FCO_NRO.2/CM_DAP SF_DAP_VERIFICATION

FIA_AFL.1/CM SF_ENTITY_AUTHENTICATION/SECURE_CHANNEL

FIA_UAU.1/CM SF_ENTITY_AUTHENTICATION/SECURE_CHANNEL,

SF_GP_DISPATCHER

FIA_UAU.4/CardIssuer SF_ENTITY_AUTHENTICATION/SECURE_CHANNEL,
SF_RANDOM_NUMBER

FIA_UAU.7/CardIssuer SF_ENTITY_AUTHENTICATION/SECURE_CHANNEL,
SF_RANDOM_NUMBER

FPR_UNO.1/Key_CM SF_KEY_MANAGEMENT, SF_UNOBSERVABILITY

FPT_TDC.1/CM SF_KEY_MANAGEMENT

FMT_SMR.2/CM SF_ENTITY_AUTHENTICATION/SECURE_CHANNEL

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 149/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

Security Functional Requirements TOE Summary Specification

FCS_COP.1/CM SF_ENTITY_AUTHENTICATION/SECURE_CHANNEL,
SF_ENCRYPTION_AND_DECRYPTION

FDP_ACC.2/PP SF_AUTHENTICATION, SF_RESIDENT_APPLICATION_DISPATCHER

SF_PRE_PERSO_AND_PATCHING

FDP_ACF.1/PP SF_AUTHENTICATION

SF_PRE_PERSO_AND_PATCHING

FDP_UCT.1/PP SF_AUTHENTICATION, SF_PRE_PERSO_AND_PATCHING

FDP_ITC.1/PP SF_AUTHENTICATION, SF_RESIDENT_APPLICATION_DISPATCHER,
SF_PRE_PERSO_AND_PATCHING

FIA_AFL.1/PP SF_AUTHENTICATION, SF_PRE_PERSO_AND_PATCHING

FIA_UAU.1/PP SF_RESIDENT_APPLICATION_DISPATCHER

SF_PRE_PERSO_AND_PATCHING

FIA_UID.1/PP SF_RESIDENT_APPLICATION_DISPATCHER

SF_PRE_PERSO_AND_PATCHING

FMT_MSA.1/PP SF_AUTHENTICATION, SF_PRE_PERSO_AND_PATCHING

FMT_SMF.1/PP SF_AUTHENTICATION, SF_PRE_PERSO_AND_PATCHING

FIA_UAU.4/CardManu SF_AUTHENTICATION

FIA_UAU.7/CardManu SF_AUTHENTICATION, SF_RANDOM_NUMBER

FMT_MOF.1/PP SF_PRE_PERSO_AND_PATCHING,
SF_RESIDENT_APPLICATION_DISPATCHER

FMT_SMR.2/PP SF_AUTHENTICATION, SF_PRE_PERSO_AND_PATCHING,
SF_RESIDENT_APPLICATION_DISPATCHER

FMT_MSA.3/PP SF_AUTHENTICATION, SF_PRE_PERSO_AND_PATCHING

FCS_COP.1/PP SF_ENCRYPTION_AND_DECRYPTION, SF_AUTHENTICATION,
SF_PRE_PERSO_AND_PATCHING

FCS_CKM.4/PP SF_KEY_DESTRUCTION, SF_PRE_PERSO_AND_PATCHING

FDP_UIT.1/PP SF_PRE_PERSO_AND_PATCHING

FCS_CKM.1/PP SF_KEY_GENERATION, SF_PRE_PERSO_AND_PATCHING

FAU_STG.2 SF_PRE_PERSO_AND_PATCHING

FPT_PHP.3/SCP SF_HARDWARE_OPERATING

FPT_RCV.4/SCP SF_DATA_COHERENCY

FRU_FLT.1/SCP SF_MEMORY_FAILURE

FPR_UNO.1/USE_KEY SF_UNOBSERVABILITY

FIA_AFL.1/PIN SF_CARDHOLDER_VERIFICATION

FMT_MTD.2/GP_PIN SF_CARDHOLDER_VERIFICATION

FMT_MTD.1/PIN SF_CARDHOLDER_VERIFICATION

FIA_AFL.1/GP_PIN SF_CARDHOLDER_VERIFICATION

FDP_ACC.2/RV_Stack SF_RUNTIME_VERIFIER

FDP_ACF.1/RV_Stack SF_RUNTIME_VERIFIER

FMT_MSA.1/RV_Stack SF_RUNTIME_VERIFIER

FMT_MSA.2/RV_Stack SF_RUNTIME_VERIFIER

FQR : FQR 110 9395 Edition: 3 Date : 11/02/2020 150/150

All rights of IDEMIA are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner.

Security Functional Requirements TOE Summary Specification

FMT_MSA.3/RV_Stack SF_RUNTIME_VERIFIER

FMT_SMF.1/RV_Stack SF_RUNTIME_VERIFIER

FDP_ACC.2/RV_Heap SF_RUNTIME_VERIFIER

FDP_ACF.1/RV_Heap SF_RUNTIME_VERIFIER

FMT_MSA.1/RV_Heap SF_RUNTIME_VERIFIER

FMT_MSA.2/RV_Heap SF_RUNTIME_VERIFIER

FMT_MSA.3/RV_Heap SF_RUNTIME_VERIFIER

FMT_SMF.1/RV_Heap SF_RUNTIME_VERIFIER

FDP_ACC.2/RV_Transient SF_RUNTIME_VERIFIER

FDP_ACF.1/RV_Transient SF_RUNTIME_VERIFIER

FMT_MSA.1/RV_Transient SF_RUNTIME_VERIFIER

FMT_MSA.2/RV_Transient SF_RUNTIME_VERIFIER

FMT_MSA.3/RV_Transient SF_RUNTIME_VERIFIER

FMT_SMF.1/RV_Transient SF_RUNTIME_VERIFIER

Table 16 SFRs and TSS – Coverage

