

Ministero dello Sviluppo Economico

Istituto Superiore delle Comunicazioni e delle Tecnologie dell'Informazione

Organismo di Certificazione della Sicurezza Informatica

Schema nazionale per la valutazione e certificazione della sicurezza di sistemi e prodotti ICT (DPCM del 30 ottobre 2003 - G.U. n. 93 del 27 aprile 2004)

> Certificato n. 4/17 (Certification No.)

ASapp-eID-EAC-PACE-AA v1.0 **Prodotto:** (Product)

HID Global / Arjo Systems

Sviluppato da: (Developed by)

Il prodotto indicato in questo certificato è risultato conforme ai requisiti dello standard ISO/IEC 15408 (Common Criteria) v. 3.1 per il livello di garanzia:

> The product identified in this certificate complies with the requirements of the standard ISO/IEC 15408 (Common Criteria) v. 3.1 for the assurance level:

EAL4+ (ALC_DVS.2, ATE_DPT.2, AVA_VAN.5)

Il Direttore (Dott.ssa Rita Forsi) Kike For

Roma, 20 settembre 2017

Fino a EAL4 (Up to EALA)

Fino a EAL2 (Up to EAL2)

This page is intentionally left blank

Ministero dello Sviluppo Economico Istituto Superiere delle Comunicazioni e delle Tecnologie dell'Informazione

Organismo di Certificazione della Sicurezza Informatica

Certification Report

ASapp-eID-EAC-PACE-AA v1.0

OCSI/CERT/SYS/10/2016/RC

Version 1.0

20 September 2017

Courtesy translation

Disclaimer: this translation in English language is provided for informational purposes only; it is not a substitute for the official document and has no legal value. The original Italian language version of the document is the only approved and official version.

1 Document revisions

Version	Author	Information	Date
1.0	OCSI	First issue	20/09/2017

2 Index

2 Index		
8 Acronyms		
4 Bibliography		
5 Recognition of the certificate	11	
5.1 European Recognition of CC Certificates (SOGIS-MRA)	11	
5.2 International Recognition of CC Certificates (CCRA)		
6 Statement of Certification	12	
7 Summary of the evaluation	13	
7.1 Introduction	13	
7.2 Executive summary	13	
7.3 Evaluated product	13	
7.3.1 TOE Architecture	14	
7.3.2 TOE security features	15	
7.4 Documentation	16	
7.5 Protection Profile (PP) claim	16	
7.6 Functional and assurance requirements	16	
7.7 Evaluation conduct	16	
7.8 General considerations on the validity of the certification	17	
8 Evaluation outcome	18	
8.1 Evaluation results	18	
8.2 Recommendations	19	
9 Annex A – Guidelines for the safe use of the product	20	
9.1 Delivery	20	
9.2 Initialization and secure use of the TOE	20	
10 Annex B – Evaluated configuration	21	
11 Annex C – Test activity	22	
11.1 Test configuration	22	
11.2 Functional tests performed by the developer	22	
11.2.1 Test coverage	22	

11.2	2.2 Test results	23
11.3	Functional and independent tests performed by the evaluators	23
11.4	Vulnerability analysis and penetration tests	23

3 Acronyms

- BACBasic Access ControlCCCommon Criteria
- ____
- **CCRA** Common Criteria Recognition Arrangement
- **CEM** Common Evaluation Methodology
- **DPCM** Decreto del Presidente del Consiglio dei Ministri
- EAL Evaluation Assurance Level
- eMRTD electronic Machine Readable Travel Document
- HW Hardware
- ICAO International Civil Aviation Organization
- LGP Linea Guida Provvisoria
- LVS Laboratorio per la Valutazione della Sicurezza
- NIS Nota Informativa dello Schema
- **OCSI** Organismo di Certificazione della Sicurezza Informatica
- PACE Password Authenticated Connection Establishment
- **PP** Profilo di Protezione
- **RFV** Rapporto Finale di Valutazione
- SAR Security Assurance Requirement
- **SFR** Security Functional Requirement
- SW Software
- **TDS** Traguardo di Sicurezza
- **TOE** Target of Evaluation
- **TSF** TOE Security Functionality
- **TSFI** TOE Security Functionality Interface

4 Bibliography

- [CC1] CCMB-2012-09-001, "Common Criteria for Information Technology Security Evaluation, Part 1 – Introduction and general model", Version 3.1, Revision 4, September 2012
- [CC2] CCMB-2012-09-002, "Common Criteria for Information Technology Security Evaluation, Part 2 – Security functional components", Version 3.1, Revision 4, September 2012
- [CC3] CCMB-2012-09-003, "Common Criteria for Information Technology Security Evaluation, Part 3 – Security assurance components", Version 3.1, Revision 4, September 2012
- [CCRA] "Arrangement on the Recognition of Common Criteria Certificates In the field of Information Technology Security", July 2014
- [CEM] CCMB-2012-09-004, "Common Methodology for Information Technology Security Evaluation – Evaluation methodology", Version 3.1, Revision 4, September 2012
- [LGP1] Schema nazionale per la valutazione e certificazione della sicurezza di sistemi e prodotti nel settore della tecnologia dell'informazione - Descrizione Generale dello Schema Nazionale - Linee Guida Provvisorie - parte 1 – LGP1 versione 1.0, Dicembre 2004
- [LGP2] Schema nazionale per la valutazione e certificazione della sicurezza di sistemi e prodotti nel settore della tecnologia dell'informazione -Accreditamento degli LVS e abilitazione degli Assistenti - Linee Guida Provvisorie - parte 2 – LGP2 versione 1.0, Dicembre 2004
- [LGP3] Schema nazionale per la valutazione e certificazione della sicurezza di sistemi e prodotti nel settore della tecnologia dell'informazione - Procedure di valutazione - Linee Guida Provvisorie - parte 3 – LGP3, versione 1.0, Dicembre 2004
- [NIS1] Organismo di certificazione della sicurezza informatica, Nota Informativa dello Schema N. 1/13 Modifiche alla LGP1, versione 1.0, Novembre 2013
- [NIS2] Organismo di certificazione della sicurezza informatica, Nota Informativa dello Schema N. 2/13 Modifiche alla LGP2, versione 1.0, Novembre 2013
- [NIS3] Organismo di certificazione della sicurezza informatica, Nota Informativa dello Schema N. 3/13 Modifiche alla LGP3, versione 1.0, Novembre 2013
- [SOGIS] "Mutual Recognition Agreement of Information Technology Security Evaluation Certificates", Version 3, January 2010

- [BSI-56] BSI-CC-PP-0056-V2-2012, Machine Readable Travel Document with "ICAO Application", Extended Access Control with PACE, Version 1.3.2, 5 December 2012
- [BSI-68] BSI-CC-PP-0068-V2-2011, Machine Readable Travel Document using Standard Inspection Procedure with PACE (PACE_PP), Version 1.0, 2 November 2011
- [BSI-TR] BSI TR-03105 Part 3.2: Advanced Security Mechanisms for Machine Readable Travel Documents – Extended Access Control (EACv1) Tests for security implementation, version 1.4.1, April 2014
- [CCDB] CCDB-2015-12-001, Supporting Document, Mandatory Technical Document, Composite product evaluation for Smart Cards and similar devices, Version 1.4, December 2015
- [ETR-COMP] ETR for Composite Evaluation NXP JCOP 3 SECID P60 (OSA) PL 2/5 EAL5+, Brightsight, v1.0, 21 December 2016
- [ICAO-P10] ICAO Doc 9303, Machine Readable Travel Documents, Seventh Edition, 2015, Part 10: Logical Data Structure (LDS) for Storage of Biometrics and Other Data in the Contactless Integrated Circuit (IC)
- [ICAO-P11] ICAO Doc 9303, Machine Readable Travel Documents, Seventh Edition, 2015, Part 11: Security Mechanisms for MRTDs
- [ICAO-P12] ICAO Doc 9303, Machine Readable Travel Documents, Seventh Edition, 2015, Part 12: Public Key Infrastructure for MRTDs
- [ICAO-TR] ICAO: Machine Readable Travel Documents Technical Report RF Protocol and Application Test Standard for EMRTD – Part 3: Tests for Application Pro-tocol and Logical Data Structure, version 2.10, July 2016
- [INI] ASapp-eID Applet Initialization Guidance Version 1.0, 14 March 2017, reference TCAE160083
- [NSCIB] Certification Report for "NXP JCOP 3 SECID P60 (OSA) PL2/5", 21 December 2016, ref. NSCIB-CC-16-99111-CR2
- [PER] ASapp-eID Applet Personalization Guidance Version 1.0, 14 March 2017, reference TCAE160084
- [RFV] "ASapp-eID Machine Readable Electronic Document EAC-PACE-AA" Evaluation Technical Report, v3.0, 17 August 2017
- [TDS] "ASapp-eID Machine Readable Electronic Document EAC-PACE-AA" Security Target, v7, 15 August 2017, reference TCAE160089
- [USR] ASapp-eID Applet Operational User Guidance Version 1.2, 7 July 2017, reference TCAE160075

5 Recognition of the certificate

5.1 European Recognition of CC Certificates (SOGIS-MRA)

The European SOGIS-Mutual Recognition Agreement (SOGIS-MRA, version 3 [SOGIS]) became effective in April 2010 and provides mutual recognition of certificates based on the Common Criteria (CC) Evaluation Assurance Level up to and including EAL4 for all IT-Products. A higher recognition level for evaluations beyond EAL4 is provided for IT-Products related to specific Technical Domains only.

The current list of signatory nations and of technical domains for which the higher recognition applies and other details can be found on http://www.sogisportal.eu.

The SOGIS-MRA logo printed on the certificate indicates that it is recognised under the terms of this agreement by signatory nations.

This certificate is recognized under SOGIS-MRA up to EAL4.

5.2 International Recognition of CC Certificates (CCRA)

The current version of the international arrangement on the mutual recognition of certificates based on the CC (Common Criteria Recognition Arrangement, [CCRA] has been ratified on 08 September 2014. It covers CC certificates compliant with collaborative Protection Profiles (cPP), up to and including EAL4, or certificates based on assurance components up to and including EAL 2, with the possible augmentation of Flaw Remediation family (ALC_FLR).

The current list of signatory nations and of collaborative Protection Profiles (cPP) and other details can be found on http://www.commoncriteriaportal.org.

The CCRA logo printed on the certificate indicates that it is recognised under the terms of this agreement by signatory nations.

This certificate is recognized under CCRA up to EAL2.

6 Statement of Certification

The Target of Evaluation (TOE) is the product "ASapp-eID Machine Readable Electronic Document – EAC-PACE-AA", short name "ASapp-eID-EAC-PACE-AA v1.0", developed by HID Global / Arjo Systems.

The TOE is a composite product and comprises:

- the Platform "NXP JCOP 3 SECID P60 (OSA) PL 2/5", short name "JCOP3 SECID P60", certified under The Netherland CC Scheme at EAL5+ (augmented with AVA_VAN.5, ALC_DVS.2, ASE_TSS.2 and ALC_FLR.1) [NSCIB];
- the Application Part of the TOE, an ICAO applet compliant with ICAO Doc 9303 ([ICAO-P10], [ICAO-P11] and [ICAO-P12]);
- the associated guidance documentation ([INI], [PER] and [USR]).

Therefore, the evaluation has been conducted using the results of the Platform CC certification [NSCIB] and following the recommendations contained in the document "Composite product evaluation for Smart Cards and similar devices" [CCDB], as required by the international agreements CCRA and SOGIS.

The evaluation has been conducted in accordance with the requirements established by the Italian Scheme for the evaluation and certification of security systems and products in the field of information technology and expressed in the Provisional Guidelines [LGP1, LGP2, LGP3] and Scheme Information Notes [NIS1, NIS2, NIS3]. The Scheme is operated by the Italian Certification Body "Organismo di Certificazione della Sicurezza Informatica (OCSI)", established by the Prime Minister Decree (DPCM) of 30 October 2003 (O.J. n.98 of 27 April 2004).

The objective of the evaluation is to provide assurance that the product complies with the security requirements specified in the associated Security Target [TDS]; the potential consumers of the product should review also the Security Target, in addition to the present Certification Report, in order to gain a complete understanding of the security problem addressed. The evaluation activities have been carried out in accordance with the Common Criteria Part 3 [CC3] and the Common Evaluation Methodology [CEM].

The TOE resulted compliant with the requirements of Part 3 of the CC v 3.1 for the assurance level EAL4, augmented with ALC_DVS.2, ATE_DPT.2, AVA_VAN.5, according to the information provided in the Security Target [TDS] and in the configuration shown in Annex B of this Certification Report.

The publication of the Certification Report is the confirmation that the evaluation process has been conducted in accordance with the requirements of the evaluation criteria Common Criteria - ISO/IEC 15408 ([CC1], [CC2], [CC3]) and the procedures indicated by the Common Criteria Recognition Arrangement [CCRA] and that no exploitable vulnerability was found. However the Certification Body with such a document does not express any kind of support or promotion of the TOE.

7 Summary of the evaluation

7.1 Introduction

This Certification Report states the outcome of the Common Criteria evaluation of the product "ASapp-eID-EAC-PACE-AA v1.0" to provide assurance to the potential consumers that TOE security features comply with its security requirements.

In addition to the present Certification Report, the potential consumers of the product should review also the Security Target [TDS], specifying the functional and assurance requirements and the intended operational environment.

7.2 Executive summary

Name of TOE	ASapp-eID-EAC-PACE-AA v1.0	
Security Target	ASapp-eID-EAC-PACE-AA v1.0 Security Target, v7, 15 August 2017, reference TCAE160089	
Evaluation Assurance Level	EAL4 augmented with ALC_DVS.2, ATE_DPT.2, AVA_VAN.5	
Developer	HID Global / Arjo Systems	
Sponsor	HID Global / Arjo Systems	
LVS	Systrans Software Laboratory - CCLAB	
CC version	3.1 Rev. 4	
PP claim	BSI-CC-PP-0056-V2-2012 [BSI-56], BSI-CC-PP-0068- V2-2011 [BSI-68]	
Kickoff date	20 September 2016	
Completion date	9 August 2017	

The certification results apply only to the version of the product shown in this Certification Report and only if the operational environment assumptions described in the Security Target [TDS] are fulfilled.

7.3 Evaluated product

This section summarizes the main functional and security requirements of TOE; for a detailed description, please refer to the Security Target [TDS].

The TOE "ASapp-eID-EAC-PACE-AA v1.0" is an electronic document representing a smart card programmed according to the requirements and recommendations established by the International Civil Aviation Organization in ICAO Doc 9303 [ICAO-P11].

The TOE is a composite product and comprises

- the Platform "NXP JCOP 3 SECID P60 (OSA) PL 2/5", short name "JCOP3 SECID P60", certified under The Netherland CC Scheme at EAL5+ (augmented with AVA_VAN.5, ALC_DVS.2, ASE_TSS.2 and ALC_FLR.1) [NSCIB];
- the Application Part of the TOE, an ICAO applet compliant with ICAO Doc 9303 ([ICAO-P10], [ICAO-P11] and [ICAO-P12]);
- the associated guidance documentation:
 - Initialization Guidance for ASapp-eID Applet [INI];
 - Personalization Guidance for ASapp-eID Applet [PER];
 - Operational User Guidance for ASapp-eID Applet [USR].

The intended customer of the product is the issuing State or Organization, who is in charge of delivering the electronic document to the holders, after storing their personal data, such as biographical data, printed portrait, etc.

The electronic document is viewed as unit of the "physical" part (in form of paper and/or plastic and chip), which presents visual readable data, and the "logical" part, where data are stored according to a Logical Data Structure (LDS) as specified by ICAO [ICAO-P10]. The issuing State or Organization implements security features of the travel document to maintain the authenticity and integrity of the travel document and their data. The physical part is identified by the document number and protected by physical security measures, while the logical part is protected in authenticity and integrity by a digital signature created by the issuing State or Organization.

The TOE communicates with the electronic terminals via the protocol Password Authenticated Connection Establishment (PACE), according to the requirements specified in the Protection Profile "Machine Readable Travel Document using Standard Inspection Procedure with PACE" (PACE PP), BSI-CC-PP-0068-V2 [BSI-68].

In general, products of this kind can also support the mechanism of access control Basic Access Control (BAC). However, a product that implements the TOE with the mechanism BAC operates outside of the security policy defined in the TDS.

7.3.1 TOE Architecture

For a detailed description of the TOE, consult the Security Target [TDS], and in particular:

- the physical and logical parts of the TOE are described in par. 1.4.2;
- the TOE life cycle is described in terms of four life cycle phases: development, manufacturing, personalization and operational use, described in par. 1.5, together with the operations allowed to users and administrators for each of them.

7.3.2 TOE security features

7.3.2.1 Platform compatibility

Some aspects related to security features of the TOE, including security objectives, assumptions, threats and organizational security policies, defined in the Security Target, are covered directly by the Platform. For details see Appendix A of [TDS].

7.3.2.2 Security features

The TOE security features are organized in security services, described in detail in par. 7.1 of [TDS], the most significant aspects are below informally summarized:

- Identification & Authentication: Access to functions and data of the TOE is only allowed to authenticated users. The authentication mechanism applied depends on the inspection system.
- Secure data exchange: This security service concerns the creation and the management of a secure communication channel for the sensitive data exchange between the TOE and the Inspection System. On this channel, the data will be encrypted and authenticated with session keys such that the TOE is able to verify the integrity and authenticity of received data.
- Storage and Access Control of Data Objects: The assets (user data and TSF data) can only be accessed as defined by the access right written during the personalization process and allows the access to the TOE identification data in the Personalization phase. Furthermore, the access conditions allow to differentiate the roles based on the knowledge of secret keys. Any access not explicitly allowed is denied.
- Life cycle management: It ensures that the TOE life cycle status is set in an irreversible way to mark the following phases in the given order: manufacturing, personalization and operational use. The only role allowed to set the life cycle status is the Personalization Agent.
- **Software integrity check of TOE's assets**: The TOE doesn't allow to analyze, debug or modify TOE's software during the operational use. In phase 3 and 4 no commands are allowed to load executable code.
- Security features provided by the hardware: The TOE benefits of a set of features provided by the certified IC Platform.
- Verification of digital signatures: During the terminal authentication, a signature verification is performed through the check of the certificate chain up to a trusted start point (e.g. a public key of the Country Verifying Certificate Authority) and the current date handling.

7.4 Documentation

The guidance documentation specified in Annex A - Guidelines for the safe use of the product is delivered to the customer together with the product. The intended customer of the product is the issuing State or Organization, who is in charge of delivering the electronic document to the holders.

The guidance documentation contains all the information for secure initialization, configuration and secure use the TOE in accordance with the requirements of the Security Target [TDS].

Customers should also follow the recommendations for the safe use of the TOE contained in par. 8.2 of this report.

7.5 Protection Profile (PP) claim

The TOE claims strict conformance to the following two Protection Profiles:

- BSI-CC-PP-0056-V2-2012 [BSI-56], which defines the security objectives and requirements for the contact based/contactless smart card of machine readable travel documents (MRTD) protected by the Password Authenticated Connection Establishment (PACE) mechanism;
- BSI-CC-PP-0068-V2-2011 [BSI-68], which refers to contact based/contactless smart card with software application used for implementing electronic travel documents, such as electronic passports and similar.

7.6 Functional and assurance requirements

All Security Assurance Requirements (SAR) have been selected from CC Part 3 [CC3].

Please refer to the Security Target [TDS] for the complete description of all security objectives, the threats that these objectives should address, the Security Functional Requirements (SFR) and the security functions that realize the same objectives.

All the Security Functional Requirements (SFR) have been selected or derived by extension from CC Part 2 [CC2]. In particular, considering that the Security Target claims strict conformance to two PPs [BSI-56, BSI-68], all extended components from such PPs are included: FIA_API from [BSI-56], FAU_SAS, FCS_RND, FMT_LIM and FPT_EMS from [BSI-68].

7.7 Evaluation conduct

The evaluation has been conducted in accordance with the requirements established by the Italian Scheme for the evaluation and certification of security systems and products in the field of information technology and expressed in the Provisional Guideline [LGP3] and the Scheme Information Note [NIS3] and in accordance with the requirements of the Common Criteria Recognition Arrangement [CCRA].

Therefore, considering that the TOE is a composite product, the evaluation has been conducted following the recommendations contained in the document "Composite product evaluation for Smart Cards and similar devices" [CCDB], as required by the international

agreements CCRA and SOGIS. In particular, the penetration tests have been completed completed in July 2017, within 18 months from the Platform vulnerability analysis (December 2016, the reference date indicated in the relevant evaluation [ETR-COMP]).

The purpose of the evaluation is to provide assurance on the effectiveness of the TOE to meet the requirements stated in the relevant Security Target [TDS]. Initially the Security Target has been evaluated to ensure that constitutes a solid basis for an evaluation in accordance with the requirements expressed by the standard CC. Then, the TOE has been evaluated on the basis of the statements contained in such a Security Target. Both phases of the evaluation have been conducted in accordance with the CC Part 3 [CC3] and the Common Evaluation Methodology [CEM].

The Certification Body OCSI has supervised the conduct of the evaluation performed by the evaluation facility (LVS) Systrans CCLAB.

The evaluation was completed on 9 August 2017 with the issuance by LVS of the Evaluation Technical Report [RFV], which was approved by the Certification Body on 30 August 2017. Then, the Certification Body issued this Certification Report.

7.8 General considerations on the validity of the certification

The evaluation focused on the security features declared in the Security Target [TDS], with reference to the operating environment specified therein. The evaluation has been performed on the TOE configured as described in Annex B. Potential customers are advised to check that this corresponds to their own requirements and to pay attention to the recommendations contained in this Certification Report.

The certification is not a guarantee that no vulnerabilities exist; it remains a probability (the smaller the higher the assurance level) that exploitable vulnerabilities can be discovered after the issuance of the certificate. This Certification Report reflects the conclusions of the certification at the time of issuance. Potential customers are invited to check regularly the arising of any new vulnerability after the issuance of this Certification Report, if the vulnerability can be exploited in the operational environment of the TOE, check with the developer if security updates have been developed and if those updates have been evaluated and certified.

8 Evaluation outcome

8.1 Evaluation results

Following the analysis of the Evaluation Technical Report [RFV] issued by the LVS Systrans CCLAB and documents required for the certification, and considering the evaluation activities carried out, the Certification Body OCSI concluded that TOE "ASapp-eID-EAC-PACE-AA v1.0" meets the requirements of Part 3 of the Common Criteria [CC3] provided for the evaluation assurance level EAL4, augmented with ALC_DVS.2, ATE_DPT.2, AVA_VAN.5, with respect to the security features described in the Security Target [TDS] and the evaluated configuration, shown in Annex B.

Table 1 summarizes the final verdict of each activity carried out by the LVS in accordance with the assurance requirements established in [CC3] for the evaluation assurance level EAL4, augmented with ALC_DVS.2, ATE_DPT.2, AVA_VAN.5.

Assurance classes and components		Verdict
Security Target evaluation	Classe ASE	Pass
Conformance claims	ASE_CCL.1	Pass
Extended components definition	ASE_ECD.1	Pass
ST introduction	ASE_INT.1	Pass
Security objectives	ASE_OBJ.2	Pass
Derived security requirements	ASE_REQ.2	Pass
Security problem definition	ASE_SPD.1	Pass
TOE summary specification	ASE_TSS.1	Pass
Development	Classe ADV	Pass
Security architecture description	ADV_ARC.1	Pass
Complete functional specification	ADV_FSP.4	Pass
Implementation representation of the TSF	ADV_IMP.1	Pass
Basic modular design	ADV_TDS.3	Pass
Guidance documents	Classe AGD	Pass
Operational user guidance	AGD_OPE.1	Pass
Preparative procedures	AGD_PRE.1	Pass
Life cycle support	Classe ALC	Pass
Production support, acceptance procedures and automation	ALC_CMC.4	Pass
Problem tracking CM coverage	ALC_CMS.4	Pass

Assurance classes and components	Verdict	
Delivery procedures	ALC_DEL.1	Pass
Sufficiency of security measures	ALC_DVS.2	Pass
Developer defined life-cycle model	ALC_LCD.1	Pass
Well-defined development tools	ALC_TAT.1	Pass
Test	Classe ATE	Pass
Analysis of coverage	ATE_COV.2	Pass
Testing: security enforcing modules	ATE_DPT.2	Pass
Functional testing	ATE_FUN.1	Pass
Independent testing - sample	ATE_IND.2	Pass
Vulnerability assessment	Classe AVA	Pass
Advanced methodical vulnerability analysis	AVA_VAN.5	Pass

Table 1 – Final verdicts for assurance requirements

8.2 Recommendations

The conclusions of the Certification Body OCSI are summarized in Section 6 - Statement of Certification.

Potential customers of the product "ASapp-eID-EAC-PACE-AA v1.0" are suggested to properly understand the specific purpose of certification reading this Certification Report together with the Security Target [TDS].

The TOE must be used according to the Security Objectives for the operational environment specified in par. 4.2 of the Security Target [TDS]. It is assumed that, in the operating environment of the TOE, all the assumptions and the organizational security policies described in the TDS are respected, particularly those compatible with the Platform HW (see [TDS] Appendix A).

This Certification Report is valid for the TOE in the evaluated configuration; in particular, Annex A includes a number of recommendations relating to delivery, initialization, configuration and safe use of the product, according to the guidance documentation provided together with the TOE ([INI], [PER] and [USR]).

9 Annex A – Guidelines for the safe use of the product

This annex provides considerations particularly relevant to the potential customers of the product.

9.1 Delivery

Since the TOE is a composite product, the delivery procedures entail interactions between the application developer (HID Global / Arjo Systems) and the Platform manufacturer (NXP).

In particular, the platform manufacturer implements the application in the integrated circuit and activates the process of initialization and customization, with the cooperation of the application developer. The document just created, encrypted with a special transport key, is delivered to the customer, i.e. the Card Issuer (State or other Organization) of the electronic document, by a trusted express courier. If the document is lost, however, it cannot be altered, since, after the application is loaded and configured, it becomes readonly. Finally, the Card Issuer delivers the individual documents to the holders personally at the official issuer site, or sending by post, according to the local regulations.

The application developer HID Global / Arjo Systems is responsible for the maintenance of the security aspects (integrity, confidentiality, availability).

More detail on such a procedure are contained in:

- Initialization Guidance for ASapp-eID Applet [INI];
- Personalization Guidance for ASapp-eID Applet [PER].

9.2 Initialization and secure use of the TOE

The secure initialization of the TOE and the safe preparation of its operational environment in accordance with the security objectives specified in [TDS], should be done by following the instructions in the appropriate sections of the guidance documentation:

- Initialization Guidance for ASapp-eID Applet [INI];
- Personalization Guidance for ASapp-eID Applet [PER];
- Operational User Guidance for ASapp-eID Applet [USR].

10 Annex B – Evaluated configuration

The Target of Evaluation (TOE) is the product "ASapp-eID Machine Readable Electronic Document – EAC-PACE-AA", short name "ASapp-eID-EAC-PACE-AA v1.0", developed by HID Global / Arjo Systems.

The TOE is a composite product and comprises the following HW/SW components, representing the evaluated configuration of the TOE, as reported in [TDS], to which the evaluation results apply.

- the Platform "NXP JCOP 3 SECID P60 (OSA) PL 2/5", short name "JCOP3 SECID P60", certified under The Netherland CC Scheme at EAL5+ (augmented with AVA_VAN.5, ALC_DVS.2, ASE_TSS.2 and ALC_FLR.1) [NSCIB], which in turn consists of:
 - the circuitry of the e-Document's chip NXP P6022J VB;
 - the IC Dedicated Software with the parts IC Dedicated Test Software and IC Dedicated Support Software;
 - the IC Embedded Software (JCOP3 OSA).
- the Application Part of the TOE, an ICAO applet compliant with ICAO Doc 9303 ([ICAO-P10], [ICAO-P11] and [ICAO-P12]);
- the associated guidance documentation:
 - Initialization Guidance for ASapp-eID Applet [INI];
 - Personalization Guidance for ASapp-eID Applet [PER];
 - Operational User Guidance for ASapp-eID Applet [USR].

11 Annex C – Test activity

This annex describes the task of both the evaluators and the developer in testing activities. For the assurance level EAL4, augmented with ALC_DVS.2, , ATE_DPT.2, AVA_VAN.5, such activities include the following three steps:

- evaluation of the tests performed by the developer in terms of coverage and level of detail;
- execution of independent functional tests by the evaluators;
- execution of penetration tests by the evaluators.

11.1 Test configuration

For the execution of these activities a test environment has been placed at the LVS site with the support of the developer, which provided the necessary resources. In particular, the test configuration consists of the test card, a test card reader connected to the test PC, running the test cases, developed for KEOLABS SCRIPTIS environment.

Before the tests, the software application has been initialized and configured in accordance with the guidance documentation ([INI], [PER] and [USR]), as indicated in par 9.2.

Moreover, considering that the TOE is a composite product, the recommendations contained in the document [CCDB] have been followed. In particular, the hardware platform has already been certified and the results were reused from LVS, who was able to directly evaluate the software application.

11.2 Functional tests performed by the developer

11.2.1 Test coverage

The test plan presented by the developer has been largely based on the following reference documents, normally used for products such as electronic passports and similar:

- ICAO: Machine Readable Travel Documents Technical Report RF Protocol and Application Test Standard for EMRTD – Part 3: Tests for Application Pro-tocol and Logical Data Structure, version 2.10, July 2016 [ICAO-TR];
- BSI TR-03105 Part 3.2: Advanced Security Mechanisms for Machine Readable Travel Documents Extended Access Control (EACv1) Tests for security implementation, version 1.4.1, April 2014 [BSI-TR].

In addition, the developer designed independently other additional tests in order to demonstrate the complete coverage of the functional requirements SFR and of the security functions.

11.2.2 Test results

The evaluators executed a series of tests, a sample chosen from those described in the test plan presented by the developer, positively verifying the correct behavior of the TSFI and correspondence between expected results and achieved results for each test.

11.3 Functional and independent tests performed by the evaluators

Therefore, the evaluators have designed independent testing to verify the correctness of the TSFI.

They did not used testing tools in addition to the specific components of the TOE that allowed to check all TSFI selected for independent testing.

In the design of independent tests, the evaluators have considered aspects that in the developer test plan were not present or ambiguous or inserted in more complex tests, which covered a mix of interfaces but with a level of detail not adequate.

The evaluators also designed and executed some tests independently from similar tests of the developer, based only on the evaluation documentation.

Finally, considering that the TOE is a composite product, the behavior of the TOE as a whole has been verified, carrying out the additional activities specified in the family ATE_COMP, according to the document [CCDB].

All tests performed by independent evaluators generated positive results.

11.4 Vulnerability analysis and penetration tests

For the execution of these activities the same test environment already used for the activities of the functional tests has been used (see. par. 11.1)

The evaluators have first verified that the test configurations were consistent with the version of the TOE under evaluation, that is indicated in the [TDS], par. 1.4.

In a first phase, the evaluators have conducted researches using various sources in the public domain, such as Internet, books, publications, conference proceedings, including the various editions of ICCC, JIL and CCDB documents, etc., in order to identify known vulnerabilities applicable to types of products similar to the TOE, i.e. electronic documents eMRTD. They identified several potential vulnerabilities, most of which, however, refer to the hardware platform already certified EAL5+, and therefore not exploitable with the High potential attack belongs to AVA_VAN.5.

In a second step, the evaluators examined the evaluation documentation (Security Target, functional specification, TOE design, security architecture and operational documentation, including the Platform) to identify any additional potential vulnerabilities of the TOE. From this analysis, together with the source code examination, the evaluators have actually determined the presence of other potential vulnerabilities; however, also in this case, most of them have already been considered during the evaluation of the Platform, as documented in the relevant Final Report [ETR-COMP].

The evaluators have analyzed in detail the potential vulnerabilities identified in the two previous steps, to ensure their effective exploitability in the TOE operating environment. This analysis led to identify some actual potential vulnerabilities.

Therefore, the evaluators have designed some possible attack scenarios, with High attack potential, and penetration tests to verify the exploitability of the vulnerabilities potential candidates. The penetration tests have been described with sufficient detail for their repeatability using for this purpose test sheets, also used, appropriately compiled with the results, as the report of the tests themselves.

Moreover, considering that the TOE is a composite product, the behavior of the TOE as a whole has been verified, carrying out the additional activities specified in the family AVA_COMP, according to the document [CCDB].

On the basis of the penetration tests, the evaluators have actually found that no attack scenario with potential High can be completed successfully in the operating environment of the TOE as a whole. Therefore, none of the previously identified potential vulnerabilities can be exploited effectively. They have not identified residual vulnerabilities, i.e. vulnerabilities that, although not exploitable in the operating environment of the TOE, could be exploited only by an attacker with attack potential beyond High.