
Security Policy

2.1. Scope of Document

This document describes the services that the IBM 4758, with IBM Miniboot software resident in ROM and FLASH,
provides to a population of security officers, and the security policy governing access to those services.

11

12 November 16, 1998

2.2. Applicable Documents
� the FIPS 140-1 standard, the Derived Test Requirements, and on-line implementation guidelines

� DES: FIPS PUB 46-2, FIPS PUB 74, and FIPS PUB 81

� SHA-1: FIPS PUB 180-1

� DSS: FIPS PUB 186

� Pseudorandom Number Generation: Appendix 3 of FIPS PUB 186.

� Optimal Asymmetric Encryption Padding (OAEP), developed by M. Bellare and P. Rogaway and specified in the
Secure Electronic Transaction (SET) Specification Book 2: Programmer’s Guide and Book 3: Formal Protocol
Definition

� Digital Signature Scheme Giving Message Recovery: ISO/IEC 9796

� the draft 3DES standard, ANSI X9.52, Triple Data Encryption Algorithm Modes Of Operation

� the draft RSA standard, ANSI X9.31

November 16, 1998 13

2.3. Secure Coprocessor Overview

2.3.1. General Overview

A multi-chip embedded product, the IBM 4758 is intended to be a high-end secure coprocessor: a device—with a
general-purpose computation environment and high-performance crypto support—that executes software and retains
secrets, despite any foreseeable physical or logical attack. Customers can use this secure platform as a foundation for
their own secure applications, which may range from crypto APIs, to postal meters, to digital media distribution.

Miniboot Our foundational Miniboot code helps achieve this security goal by permitting software (including updates
to Miniboot itself)

� to load and execute safely,

� while allowing participants to authenticate that they are interacting with a specific untampered device in a specific
software configuration.

Authenticating the Configuration Verifying that one is interacting with an untampered device operating the
correct software is necessary for both classes of applications:

� Standalone devices, such as cryptographic accelerators. Research results show that if a user cannot
verify that their crypto box is both untampered, and operating the intended software, then their entire crypto-
graphic operation is threatened. For example, the Young and Yung attack shows how an adversary can replace
the key generation algorithm with one that appears to behave completely correctly and “randomly”—except the
adversary can learn all the keys.

� Distributed applications. Many e-commerce scenarios (such as postal meters) require that one party be able
to trust computation that occurs at a remote site, which is under the physical control of a party who may benefit
from tampering with this computation. See Figure 2.1.

Our current device provides full outgoing authentication for Layer 1 software.

Maximum Flexibility , Minimal Trust We provide these security properties while also accommodating these
constraints:

� no trusted couriers or on-site security officers are needed

� IBM maintains no database of device secrets

� IBM need never see application software

� rewritable software can fail, or behave with malice

� IBM (or other software developers) have no “backdoor access” to customer’s on-card secrets

Secure Platform Our goal is to produce a secure platform on which developers (including IBM) can build secure
applications.

Our module, for validation, consists of the IBM4758 hardware, along with the foundational Miniboot software.

By obtaining FIPS validation for our hardware and bootstrap/configuration control software (Layer 0 and Layer 1,
in Figure 2.3), we make it easy for developers to build and deploy secure, FIPS-validatable applications—since
they simply have to prepare validation documentation for their additional software, and have it evaluated for secure
operation on this module.

14 November 16, 1998

Validating our platform at Level 4—the highest level—gives customers the flexibility to design to any FIPS level they
require.

More Information For more details on the security architecture of the IBM 4758, see:

� S. W. Smith, S. H. Weingart. Building a High-Performance, Programmable Secure Coprocessor. Research
Report RC21102. IBM T.J. Watson Research Center. February 1998.

(A preprint is available on the IBM Security web site; a revised version will appear in the Elsevier journal Computer
Networks and ISDN Systems Special Issue on Network Security.)

2.3.2. Architecture and Resources

The IBM 4758 incorporates state-of-the-art hardware security and cryptography technology, including:

� hardware-noise random number generation

� modular exponentiation hardware

� DES hardware

� protective, tamper-respondent membrane

� tamper detection and response circuitry

See Figure 2.2.

Physical Security Our device is tamper-protected for life, from the moment it leaves the factory vault. Physical
penetration will change the electrical properties of the membrane; circuitry that is always active detects these changes
and near-instantly zeroizes internal secrets, by explicitly crowbarring the memory devices. The protection circuitry
also detects and responds to other environmental attacks, including via radiation, temperature, and voltage.

storage

software

CPU

IBM 4758
Secure Coprocessor

software

CPUstorage

IBM 4758
Secure Coprocessor

Figure 2.1 Our goal is to enable users, who have never met, to buy our hardware, download
software from their chosen security officers, then interact securely—each able to verify that they

are talking to the real thing, doing the right thing.

November 16, 1998 15

Physical Security Boundary

Physical
Security
Sensing
and
Response

CPU

486,
66 MHz

FLASH,
ROMDRAM

Battery−
Backed
RAM

Hardware Locks, EEPROM

Proprietary
Pipelining
Hardware

DES
Engine

Public−key
Engine

Hardware
Random
Number
Generator

Real−
Time
Clock

PCI Bus Interface

Figure 2.2 IBM4758 hardware architecture.

16 November 16, 1998

Software Architecture The internal software architecture is divided into four layers.

The foundational two layers—submitted for this validation—control the security and configuration of the device.
These layers come shipped with the device.

� Layer 0: Permanent POST0 (Power-on Self Test) and Miniboot 0 (security bootstrap).

� Layer 1: Rewritable POST1 and Miniboot 1

The upper two layers customize the operation of each individual device.

� Layer 2: System Software. Supervisor-level code.

� Layer 3: Application code.

These two layers are added in the field. The foundational Miniboot software ensures that installation, maintenance,
and update of these layers can proceed safely in a hostile environment.

See Figure 2.3.

Memory The internal non-volatile memory components consist of FLASH, battery-backed static RAM (BBRAM),
and EEPROM. The memory resources are organized according to this layer structure.

� FLASH is organized into four segments, one for each layer. Each segment contains the program for that layer.
Layer 0 is boot-block ROM. Layer 1 has two copies, to provide full atomicity

�
for Miniboot 1 updates.

� BBRAM is organized in to four sections, one for each layer. Each section contains the secrets for that layer.

� EEPROM contains some special status fields.

Layer 2: System Software
 (e.g., IBM CP/Q++)

Host

Secure Coprocessor

ROM

FLASH
(Seg1)

FLASH
(Seg2)

FLASH
(Seg3)

Layer 1: IBM POST1, Miniboot 1

Layer 0: IBM POST0, Miniboot 0

Layer 3: Application:
 (e.g., IBM CCA Crypto API)

Device
Driver

network?

Figure 2.3 IBM4758 software architecture.

�
By “atomicity,” we mean that a change happens entirely, or not at all—despite failures and interruptions. Since Miniboot 1 supports in-field

firmware repair, it’s critical that a working copy of Miniboot 1 itself always be present. Our approach eliminates the window of vulnerability created
by the underlying FLASH memory technology, which requires first erasing a region, then rewriting it. Section 12.4 contains more information on
how we provide atomicity for all Miniboot operations.

November 16, 1998 17

Hardware Locks Write-access to FLASH, read/write access to BBRAM, and read/write access to the EEPROM
are guarded by the separate Hardware Lock Microcontroller (HLM).

� The HLM makes many access control decisions based on the value of its internal rachet. Hardware reset clears
this value to zero; the HLM will advance the ratchet when requested by the main CPU, but the only way to
decrease the current value is a hardware reset—which also forces the CPU to begin executing from known ROM
in known state.

� The HLM also implements, in internal EEPROM, the factory sticky bit. Once this bit is turned off (indicating
the device is about to venture from the secure factory into the cruel world), the HLM will never let it be turned
on again.

2.3.3. Included Algorithms

The module includes these NIST-approved algorithms:

� DSS

� SHA-1

� DES

The module also includes these algorithms:

� RSA (for signing, and also for encryption)

� 3DES

� OAEP padding for public-key encryption

� ISO9796 padding for public-key signatures

� hardware random number generation

18 November 16, 1998

2.4. Cryptographic Module Security Level

This module is intended to be Level 4.

November 16, 1998 19

2.5. Roles and Services

2.5.1. Roles

Our module has roles for Officer 0, Officer 1, Officer 2, Officer 3 and a generic user.

Each layer in each card either has an external officer who is in charge of it (“owns” it)—or is “unowned.” This entity
does not have to be co-located with the card—in fact, it usually isn’t. (Further, any one officer may be in charge of
layers in many cards.)

We enforce a tree structure on officers:

� All cards will have IBM Officer
�

as their Officer 0.

� All cards will have IBM Officer 	 as their Officer 1.

� If layer
 is unowned in a card, then no layer ���
 can be owned.

� One owns exactly one layer
 (but perhaps in many cards); one’s parent owner (
���) must be the same in all
such cards.

Figure 2.4 through Figure 2.6 sketch examples of this structure.

A card’s Officer 2 is identified by a two-byte OwnerID chosen by its Officer 1. A card’s Officer 3 is identified (among
all other officers sharing the same Officer 2 parent) by a two-byte OwnerID chosen by its Officer 2. (Both OwnerIDs
together identify an Officer 3 among all Officer 3s.)

We additionally have a notion of User: someone who happens to be communicating with the card wherever it is
installed. (See also Section 2.7).

Specific application programs may define other classes of principals.

2.5.2. Services

Our module provides three types of services:

Authority over
Layer 1:

Authority over
Layer 2:

Authority over
Layer 3:

IBM Miniboot 1
Officer

IBM OS Officer

OEM1

OEM2

IBM crypto API
officer

University 1 Bank1
Bank2

IBM Miniboot 0
Officer

Authority over
Layer 0:

OEM3

OEM4

Figure 2.4 Although each device has at most one officer in charge of each layer. The space of
all officers over all devices is organized into a tree. This diagram shows an example hierarchy.

20 November 16, 1998

Authority over
Layer 1:

Authority over
Layer 2:

Authority over
Layer 3:

IBM Miniboot 1
Officer

IBM OS Officer

OEM1

OEM2

IBM crypto API
officer

University 1 Bank1
Bank2

IBM Miniboot 0
Officer

Authority over
Layer 0:

OEM3

OEM4

Figure 2.5 Within this example owner hierarchy, one family of devices might have a
Layer 2 controlled by “OEM2” and a Layer 3 controlled by “OEM 3.”

Authority over
Layer 1:

Authority over
Layer 2:

Authority over
Layer 3:

IBM Miniboot 1
Officer

IBM OS Officer

OEM1

OEM2

IBM crypto API
officer

University 1 Bank1
Bank2

OEM4

IBM Miniboot 0
Officer

Authority over
Layer 0:

OEM3

Figure 2.6 Within this example owner hierarchy, another family of devices might have the
IBM OS/Control Program in Layer 2 and the IBM crypto API in Layer 3.

November 16, 1998 21

� Miniboot queries

� Miniboot commands

� run-time BBRAM requests

Miniboot queries and commands must be presented to the module from its host, when the appropriate half of Miniboot
is executing.

As the name implies, Miniboot runs at boot time. Hardware reset forces the 486 to begin executing from a fixed address
in Segment 0, which contains POST0 and Miniboot 0 (MB0). If POST0 fails, the device halts. If POST0 is successful,
then Miniboot 0 executes. It listens and responds to zero or more queries, followed by exactly one command.

If the command is a Continue and Segment 1 is deemed safe, execution proceeds to Segment 1, which contains POST1
and Miniboot 1 (MB1). If POST1 fails, the device halts. If POST1 is successful, then Miniboot 1 executes. It listens
and responds to zero or more queries, followed by exactly one command. If the command is a Continue and Segment 2
is deemed safe, execution proceeds to Segment 2.

When they are executing, Program 2 or Program 3 may present run-time BBRAM queries to the module.

Halt In many situations, Miniboot will halt, by sending out an explanatory code, and entering a halt/spin state. In
particular, Miniboot will halt upon:

� rejection of any command

� successful completion of any command other than “Continue”

� detection of any error

� detection of any other condition requiring alteration of configuration

This was a design decision: always halting makes it easier to be sure that precondition checks and clean-up are applied
in a known order.

Reset To resume operation, the user must cause another hardware reset. On a hardware level, the device can be
reset by:

� power-cycling the device

� triggering the “Add-on Reset” signal in bit 24 in the Bus Master Control/Status Register

On a software level, the IBM-supplied host-side device drivers will transparently reset the device (via the “Add-on
Reset” signal) when appropriate:

� When the user “closes” the device after opening it for Miniboot

� When the user “opens” the device for Miniboot, but the device driver detects the device is halted.

� When the user opens the device for ordinary operation, but the host-side driver determines that the device is not
already open. (In this case, the IBM-supplied host-side device drivers will transparently reset the device and
also execute MB0 Continue and MB1 Continue, to try to advance to the Program 2 code.)

Receipts Upon successful public-key commands, Miniboot 1 provides a signed receipt (to prove to a remote officer
that the command actually took place, on an untampered card). Miniboot 1 also signs its query responses.

22 November 16, 1998

2.5.3. Authentication

Miniboot authenticates each command request individually.

For ����� , Miniboot authenticates a command from Officer � by verifying that the public-key signature on the
command came from the entity that is Officer � for that card, and was acting in that capacity when the signature was
produced. This approach enables the officers to be located somewhere other than the devices they control.

Miniboot authenticates the Officer � commands (used for emergency repairs when the device is returned to the IBM
factory vault) using secret-key authentication based on DES. Use of any of these commands destroys any other officer
secrets that may remain in the device.

2.5.4. SRDI

The value of a secure coprocessor lies in its ability to be a trust “the real thing, doing the right thing.”

Since it is Miniboot and the hardware—the module, submitted for this validation—that provides this property, the
SRDI for Miniboot consist of the various authentication and configuration elements. These fall into two groups.

For Layer 1 through Layer 3, the SRDI consists of:

� the identity of the officer over this layer

� that officer’s public key

Since Layer 1 is Miniboot 1, its BBRAM state includes the device private key that provides the foundation of that
untampered device’s outgoing authentication ability.

The Layer 0 state includes the DES secrets used for secret-key authentication of Officer 0.

2.5.5. Queries and Commands

Table 2.1 below summarizes the queries and commands that Miniboot offers.

Miniboot 0 Queries Miniboot 0 provides two queries:

� Query: Status. This query returns general status information about the card software versions, card identification.

� Query: Secret Key Authentication Certificate. This query returns the Secret Key Authentication (SKA)
Certificate in Segment 1, if one can be found. (Since the SKA Certificate is necessary for recovering from
a damaged Segment 1, it is recommended that users retain a back-up copy off-card.)

Miniboot 0 Commands Miniboot 0 provides these commands:

� IBM Burn. Install a new Program 1 and public key for Officer 1, while still in the factory but after it’s no longer
convenient to change the FLASH chips.

� Emergency Burn 1. Install a new Program 1 and public key for Officer 1, in an untampered card that has gone
out into the cruel world but been returned to the factory for repair.

� Revive. Resurrect an (allegedly) untampered card that has been zeroized and been returned to the factory for
repair. (However, revival of production cards is not part of our current business practice.)

� Refresh SKA. Replace the SKA secrets and SKA certificate.

November 16, 1998 23

� Continue. Continue execution to Segment 1, if possible.

Note that all Miniboot 0 commands except “Continue” are carried out within an IBM secure facility.

Miniboot 1 Queries Miniboot 1 provides these queries:

� Query: Get Health. The requester selects and sends a nonce. The card returns a signed response containing
general health information:

– the same data as Miniboot 0’s Status

– identifying information about code and owners in reliable segments

– the nonce (so the requester can know this response is fresh)

� Query: Certlist. The card returns a signed response containing the certificate chain taking the card’s current
public key back to the IBM Factory CA (Certificate Authority).

Miniboot 1 Commands Miniboot 1 provides these commands:

� IBM Initialize. While still in the factory: generate a device keypair and SKA secrets, have these certified by the
Factory CA, and turn the “factory sticky bit” off forever. (This command is rejected if sticky bit is already off.)

� Field Certify. Cause an initialized card with no keypair to generate a new device keypair and have it certified.

� Re-Certify. Atomically replace the device certificate and empty the transition certificate list. (It’s a good idea to
verify that you know the public key of the card first!)

� Establish Owner � , for ����� . Give an UNOWNED layer � to someone.

� Surrender Owner � , for ����� . Give up ownership of Layer � .

� Ordinary Burn � . Ordinary update of Program � and public key for Officer n, in an untampered card. (In
preliminary documentation, this was called “Remote Burn.” The older term may still persist in a few places.)

� Emergency Burn � for ���� . Install Program � and public key for Officer n, in an untampered card—but
without using current contents of Segment � .

� Continue. Continue execution to Segment 2, if possible.

2.5.6. Run-time BBRAM Requests

Resources The module has two types of BBRAM.

� Lockable BBRAM (L-BBRAM) is accessed via the HLM. (We use the term Page n to refer to the layer- � area
here. Layer ’s area also consists of a seperate KeyArea 2.

� The RTC-BBRAM is accessed directly by the 486. (Only Layer and Layer ! have regions here.) We use the
term Region n to refer to the layer- � area here.)

7 As noted earlier, each layer owns a section of BBRAM.

� Layer " owns Page 0.

� Layer � owns Page 1.

� Layer owns Page 2, the KeyArea 2, and Region 2.

� Layer ! owns Page 3 and Region 3.

24 November 16, 1998

Service Run-time BBRAM requests consist of HLM requests, and direct access to the L-BBRAM. We document
the post-bootstrap requests here because our module has two goals:

If Program n advances the ratchet before crossing a “trust boundary,” the private data it stores in Page n will
be protected.

Miniboot will see that Page n and Region n will be cleared when configurations change in specified untrusted
ways.

Here are the post-bootstrap RTC-BBRAM services:

Read Region $, Write Region $, $&%�' .

Here are the post-bootstrap L-BBRAM services:

Advance Ratchet to $. Advance the trust ratchet. (Miniboot 1 will advance it to $�()' before passing control to
Program 2.)

Read Page $, Read Key Area 2 ($�%�'). Read that page from L-BBRAM into DRAM.

Atomic Write Page $, Atomic Write Key Area ' ($*%+' , . Atomically write data into that page. (Done via an
“open-write-commit” sequence of HLM commands.)

Atomic Clear Page $, Atomic Clear Key Area ' ($�%�'). Atomically write zeros into that page.

Read EEPROM. Read public EEPROM data.

2.5.7. Roles vs. Services

Table 2.1 summarizes what commands are allowed for what roles.

Each role must authenticate separately for each service request, as part of that request. Per our design goals, Officer $
(for $�-�.) can do this remotely.

Figure 2.7 illustrates how the commands change initialization of the device; Figure 2.8 illustrates how the command
change the configuration of Segment 2 and Segment 3.

2.5.8. Overall Security Goals

The overall goal of this policy is to ensure that the following properties hold:

Safe Execution. Miniboot will not execute or pass control to code that depends on hardware that has failed.

Access to Secrets. Program $ should have neither read nor write access to the secrets belonging to Program/10 $.

Safe Zeroization. In case of attack or failure, the device will destroy the secrets belonging to Program $
before an adversary can access the memory where those secrets are stored.

Besides hardware tamper, such attacks may include (for
/�0 $) loading of a Program

/
that Officer $ does not

trust, or fraudulent behavior by some Officer
/

.

Control of Software. Should layer $ later change in any way other than demotion due to failure, some current
Officer

/
(for
/10 $) is responsible for that action (using his current authentication keys).

Chapter 7 contains more information on the formal statements of these goals, and the formal proof that our system
provides them.

November 16, 1998 25

Query: SKA Cert

Query: Signed Health

Query: Certlist

Query: Status

Continue to Seg1

Continue to Seg2

IBM Initialize

Field Certify

Re−Certify

Revive

Refresh SKA

Establish Officer 2

Establish Officer 3

Surrender Officer 2

Surrender Officer 3

Burn new
program 1,
public key
for officer 1

At the factory
(IBM Burn

Ordinary
Burn1

Emergency
Burn1

Burn new
program 2,
public key
for officer 2

Burn new
program 3,
public key
for officer 3

Ordinary
Burn2
Emergency
Burn2

Ordinary
Burn3
Emergency
Burn3

C
od

e
O

ffi
ce

rs
S

ec
ur

ity
R

un

Q
U

E
R

IE
S

Officer 0
(IBM)

Officer 1
(IBM) Officer 2 Officer 3 User

Permitted for anyone who asks.

Permitted for anyone who asks,
while STILL IN FACTORY

RolesServices

Permitted for anyone who asks,
while STILL IN FACTORY

YES, if
privileged

YES

YES

YES

YES

YES

YES

YES

YES

YES

YES

YES

YES

YES

YES

YES, if
privileged

C
O

M
M

A
N

D
S

Table 2.1 Miniboot command/query policy.

26 November 16, 1998

Never left
the factory

Zeroized

(Left factory,
tamper response
fired)

Bad Seg1

(left factory,
Seg1 became
damaged...
but Seg0
still has secrets)

Uncertified

(Seg1 OK,
but does not
possess
certified keypair)

Fully Initialized

IBM Initialize

Field
Certify

Emergency
Burn 1

Revive

Tamper response
Various failures

Never left
the factory,
but Seg1
is damaged IBM Burn

(Seg1 is runnable)

Various failures

Figure 2.7 A sketch of the configurations and main flows for device initialization and Segment 1.

Unowned
Owned, but
Unreliable Runnable Reliable, but

unrunnable

Emergency
Burn

(Owned)

(Reliable)

Establish
Owner

Surrender

Various failures

Various failures

Various
failures

Figure 2.8 A sketch of the configurations and main flows for Segment 2 , for 2�3�4 . Note that, in
addition to the transitions shown, one can also “Burn” or “Emergency Burn” from any of the reliable

states into Runnable.

November 16, 1998 27

2.6. Security Rules

The module shall maintain the state of an officer’s program only while the module continuously maintains an environ-
ment for that program that is verifiably trusted by that officer.

The module shall not require officers to trust each other (or trust the hardware manufacturer) any more than is necessary.

The module shall support public-key authentication, wherever possible.

The module shall permit officers to retain their data across uploads, where possible and reasonable.

The module shall enable all three rewritable software layers to be installed and maintained in a hostile field, without
the use of trusted couriers or on-site security officers. See Figure 2.9.

Application Developer

Factory

Hostile Field

Software

Operating System Developer

Application

OS

Bootstrap

Figure 2.9 The IBM4758 supports three layers of rewritable software, from potentially mutually
suspicious developers, configurable in a hostile field location, with neither trusted courier nor

on-site security officer.

28 November 16, 1998

2.7. FIPS-Related Definitions

This FIPS validation addresses only the hardware, and Layer 0 and Layer 1 of the software—the generic device, as
shipped.

For the purposes of this FIPS 140-1 validation:

5 Officer 0 relates to the “Cryptographic Officer 0” role. (This officer operates only in the secure factory)

5 Officer 1 through Officer 3 relate to the “User 1” through “User 3” roles, respectively. (These entities use the
validated software to control, install, and maintain the configuration of the device, once it’s shipped.)

(Recall also the Miniboot SRDI discussion in Section 2.5.4.)

November 16, 1998 29

2.8. Module Configuration for FIPS 140-1 Compliance

2.8.1. Miniboot

To be a FIPS-compliant module, the device must be loaded with Version 3 or later of Miniboot 1. Official IBM Seg1
codeloads with revision 1.3.1 or later will contain this version.

To then operate in a FIPS-complaint mode, each officer must choose DSS for their public keys (until such time as RSA
is accepted as a NIST-approved algorithm).

2.8.2. Layers 2 and 3

The Miniboot software currently submitted for validation only controls the configuration of the device. Miniboot
responds to queries and

6 either responds to a configuration-changing command (then halts),

6 or proceeds to invoke the program in Layer 2 (if it’s there)—and goes away forever (until the next boot)

Because Miniboot advances the trust ratchet before passing control to Layer 2, the SRDI 7 that Miniboot depends on
(in protected FLASH and the Miniboot region of lockable BBRAM) cannot be compromised by Layer 2 or Layer 3.
Miniboot will still run securely the next time the device is reset.

In order to actually do something, the device must be loaded with Layer 2 (and, depending on the design of that
program, Layer 3 as well).

Hence, to operate after bootstrap as a FIPS-compliant module, layers 2 and 3 must also be FIPS validated. The level
of validation of the module in operation, as a whole, will be limited by the level of validation of these layers.

However, if both Layer 2 and Layer 3 are FIPS-validated, and neither permits ANY unvalidated code to run in the
device, then the operating system/Orange Book requirements of FIPS 140-1 will not apply to the OS/control program
residing in Layer 2.

2.8.3. Determining Mode of Operation

The “Signed Heath Query” to Miniboot 1 will return the identities and revisions of each layer’s programs, and the
signature-algorithm chosen by each officer.

8
Security Relevant Data Item (SRDI) is a term used in the FIPS 140-1 Derived Test Requirements.

