
 Page 1

Virtru Corporation

VirtruCrypto - FIPS JavaScript Module
Document Version 1.2.5 - for Module Version 1.2.0

FIPS 140-2 Non-Proprietary Security Policy

February 2, 2023

 Page 2

1. Introduction

Federal Information Processing Standards (FIPS) Publication 140-2 — Security Requirements

for Cryptographic Modules specifies requirements for cryptographic modules to be deployed in a

Sensitive but Unclassified environment. The National Institute of Standards and Technology

(NIST) and Canadian Centre for Cyber Security (CCCS) Cryptographic Module Validation

Program (CMVP) run the FIPS 140 program. The NVLAP accredits independent testing labs to

perform FIPS 140 testing; the CMVP validates modules meeting FIPS 140 validation. Validated

is the term given to a module that is documented and tested against the FIPS 140 criteria.

More information is available on the CMVP website at

http://csrc.nist.gov/groups/STM/cmvp/index.html.

About this Document

This non-proprietary Cryptographic Module Security Policy for VirtruCrypto - FIPS JavaScript

Module provides an overview of the product and a high-level description of how it meets the

overall Level 1 security requirements of FIPS 140-2.

Notices

This document may be freely reproduced and distributed in its entirety without modification.

http://csrc.nist.gov/groups/STM/cmvp/index.html

 Page 3

2. FIPS 140-2 Security Level

The following table lists the level of validation for each area in FIPS 140-2:

FIPS 140-2 Section Title Validation Level

Cryptographic Module Specification 1

Cryptographic Module Ports and Interfaces 1

Roles, Services & Authentication 1

Finite State Model 1

Physical Security N/A

Operational Environment 1

Cryptographic Key Management 1

Electromagnetic Interference / Electromagnetic Compatibility 1

Self-Tests 1

Design Assurance 1

Mitigation of Other Attacks N/A

Overall Level 1

Table 1 – FIPS 140-2 Security Levels

3. Cryptographic Module Specification

The VirtruCrypto module is a multi-chip standalone cryptographic module that operates with:

● A commercially available JavaScript engine that supports WebAssembly (WASM), such

as a browser (e.g., Chrome) or JavaScript runtime environment (e.g., node).

● A commercially available general-purpose computer hardware.

● A commercially available Operating System (OS) that runs on the computer hardware.

The VirtruCrypto module was tested on the following operational environments on the general-

purpose computer (GPC) platforms detailed below. In testing, it was run under node with WASM

enabled, on version 12.x of node:

 Page 4

Operational Environment Processor Family Computer Model

Windows 10 Intel (R) Xeon(R) Silver 4108
CPU (non-PAA)

HP Z8

Table 2 – Tested Operational Environments

As per FIPS 140-2 Implementation Guidance G.5, compliance is maintained for other versions

of the respective operational environments where the module binary is unchanged. FIPS 140-2

compliance is maintained on any GPC provided that the GPC uses the specified single user

operating system/mode specified on the validation certificate, or another compatible single user

operating system. No claim can be made as to the correct operation of the module or the

security strengths of the generated keys if any source code is changed and the module binary is

reconstructed.

The module will run on various hardware and OS while running in a JavaScript engine while

implementing the same code within the scope of the boundary (see Figure 1) with regards to the

FIPS 140-2 Level 1 requirements and, thus, the vendor may affirm JavaScript engines running

on other platforms as well1. Compatible platforms/OEs can be described as those with a single

user operational environment, where each user application and JavaScript ‘program’ runs in a

virtually separated independent space, with access enforcement. Operating systems such as

Linux, MacOS, and Windows and browsers such as Chrome provide such an operational

environment.

The module only operates in FIPS mode.

3.1 Cryptographic Boundary

The VirtruCrypto cryptographic module boundary is a WebAssembly binary made up of three

components: a C-wrapper, Boring SSL library (limited to the cryptographic operations defined in

this Security Policy), and an initialization function to verify a HMAC-SHA-256 hash against the

WebAssembly binary to ensure integrity.

Figure 1 shows the logical relationship of the cryptographic module components.

1 CMVP makes no statement as to the correct operation of the module or the security strengths of the
generated keys when ported to an operational environment which is not listed on the validation certificate
(see IG G.5).

 Page 5

Figure 1 - Logical & Physical Boundaries

The VirtruCrypto API closely follows the functionality of the Web Cryptography API, W3C

1/26/2017. WebCrypto functions all return a JavaScript Promise, with the actual result value

passed on success or generating an exception on failure.

3.2 Software Specifications

The VirtruCrypto cryptographic module provides services to JavaScript computer language

users in the form of a JavaScript library with packaged WebAssembly. The same binary is used

across different hardware and OS combinations as the JavaScript engine will absorb the

differences of the computer and hardware and OS.

The interface into the VirtruCrypto cryptographic module is via Application Programming

Interface (API) method calls. These method calls provide the interface to the cryptographic

services, for which the parameters and return codes provide the control input and status output.

4. Cryptographic Module Ports and Interfaces

I/O Logical Interface Physical Interface

Data Input API Input Parameters Physical Ports of the Platform

Data Output API Output Parameters Physical Ports of the Platform

 Page 6

& Return Codes

Control Input API Function Calls &
Input Parameters

Physical Ports of the Platform

Status Output API Output Parameters
& Return Codes and/or
Exceptions

Physical Ports of the Platform

Power Input N/A Physical Ports of the Platform

Table 3 – Module Ports and Interfaces

Control of the physical ports is outside module scope as this is a software module. However,

when the module is not initialized or is in an error state, all output on the module’s logical data

output interfaces is inhibited.

5. Roles, Authentication and Services

The cryptographic module implements both User and Crypto Officer (CO) roles. The module

does not support user authentication. The User and CO roles are implicitly assumed by the

entity accessing services implemented by the module. A user is considered the owner of the

thread that instantiates the module and, therefore, only one concurrent user is allowed.

The following abbreviations are used in Table 4: ‘X’ for Execute, ‘R’ for Read, ‘W’ for Write.

Service Approved security functions Access to
CSP

CSP Crypto
Officer

User

Initialization Initialization N/A N/A x x

Status Show Status N/A N/A x x

Perform Self Test on Demand N/A N/A x x

Symmetric (AES) Key Generation W AES Key x x

Key Import W x x

Key Export R x x

Encrypt X x x

Decrypt X x x

 Page 7

Service Approved security functions Access to
CSP

CSP Crypto
Officer

User

Key Zeroize W x x

Hashing & Message
Auth

Hashing N/A N/A x x

Key Generation W HMAC Key x x

Key Import W x x

Key Export R x x

Message Authentication X x x

Key Zeroize W x x

Digital Signature Key Pair Generation W RSA Private Key x x

Key Pair Import W x x

Key Pair Export R x x

Sign X x x

Verify X x x

Key Zeroize W x x

Asymmetric (RSA) Key Pair Generation W RSA Private Key x x

Key Pair Import W x x

Key Pair Export R x x

Encrypt x x

Key Wrap X x x

Decrypt x x

 Page 8

Service Approved security functions Access to
CSP

CSP Crypto
Officer

User

Key Unwrap X x x

Key Zeroize W x x

Entropy Generate W DRBG x x

Zeroize W x x

Table 4 – Roles and Services

6. Physical Specifications

The cryptographic module is comprised of software only and does not claim any physical

security.

7. Operational Environment

This module is to be run in a single user operational environment, where each user application

runs in virtually separated independent space. Note that modern Operating Systems such as

UNIX, Linux and Windows provide such an operational environment.

8. Cryptographic Algorithms and Key Management

8.1. Approved Cryptographic Algorithms

The module implements the following FIPS 140-2 Approved algorithms:

Category Algorithm Standard FIPS Approved Cert #

Block Ciphers AES-256 (CBC, GCM,
GMAC)

FIPS 197,
SP 800-38D

x A2602

Hash Functions SHA-256 FIPS 180-4 x A2602

Message
Authentication

HMAC-SHA-256 FIPS 198-1 x A2602

Digital Signature
(SigGen and
SigVer (using

RSA PKCS #1 v1.5
Signature (2048-bit)

PKCS #1 v2.1 x A2602

 Page 9

SHA2-256),
KeyGen)

DRBG AES-CTR DRBG (256) NIST SP 800-
90A

x A2602

Entropy ENT (P) NIST SP 800-
90B

x N/A

Cryptographic
Key Generation

CKG2

NIST SP 800-
133

x Vendor
Affirmed

Table 5 – Supported Approved Algorithms and Standards

Algorithm Usage

RSA Key Wrapping,
Non-SP 800-56B
compliant

Key establishment methodology provides between 112 and 256 bits of
encryption strength

Table 6 – Supported Non-Approved but Allowed Algorithms and Standards

Algorithm Key Key Size Security Strength

AES Key 256 bits 256

HMAC Key 256 bits 256

RSA Signature Key Pair 2048 bits 112

RSA Key (Key
Transport)

Key Pair 2048 bits 112

DRBG Key 256 bits 256

Table 7 – Key, Key Size, and Security Strength

8.2. Cryptographic Key Management

The table below provides a list of all Private keys and CSPs used by the module:

Key/CSP Name Key Description Generated/Input Output

CTR_DRBG Key 256 bits Internally Generated None

CTR_DRBG V (seed) 256 bits Internally Generated None

2 Symmetric key and asymmetric seed generation in accordance with SP 800-133rev2 and IG D.12.

 Page 10

CTR_DRBG Entropy
Input

384 bits Internally Generated None

AES-GCM Key AES (256)
encrypt/decrypt/
generate/verify key

Internally Generated
or input via API in
plaintext

If permitted during
import or generation,
output via API in
plaintext

AES-CBC Key AES (256)
encrypt/decrypt/
generate/verify key

Internally Generated
or input via API in
plaintext

If permitted during
import or generation,
output via API in
plaintext

HMAC Key Keyed hash key
(256)

Internally Generated
or input via API in
plaintext

If permitted during
import or generation,
output via API in
plaintext

RSA Key (Key
Transport)

RSA (2048 bits)
decryption (private
key transport) key

Internally Generated
or input via API in
plaintext

If permitted during
import or generation,
output via API in
plaintext

Table 8 – Key Management

Generated Keys are compliant to SP 800-133.

The Module supports internal IV generation using the module’s Approved DRBG. The

generated IV is at least 96 bits in length as per the NIST SP 800-38D, Section 8.2.2

requirements. The approved DRBG generates outputs such that the (key, IV) pair collision

probability is less than 2-32 as per FIPS 140-2 IG A.5 Scenario 2 and NIST SP 800-38D.

8.3. Public Keys

The table below provides a complete list of the Public keys used by the module:

Public Key Name Key Description

RSA Key (Key Transport) RSA (2048 bits) encryption (public key
transport) key

RSA Signature Verification Key RSA (2048 bits) signature verification public
key

Table 9 - Public Keys

 Page 11

8.4. Key Generation

The module supports generation of RSA key pairs as specified in Section 5 of NIST SP 800-

133. Specifically, the module generates the pair as the key-pair owner. For signature use, FIPS

186 Section 5.1 applies. The module uses a generalized version of the algorithm given in FIPS

186-4 Appendix B.3, and additionally runs FIPS checking which includes validating the public

key per SP 800-89 5.3.3 and performing a pair-wise consistency check per FIPS 140-2 4.9.2.

For generation of keys for AES-GCM and AES-CBC, 256 random bits are generated internally

from the DRBG. The module also allows for key input via API and as such, the module provides

no assurance of minimum strength or security of input keys.

The module employs a Validated NIST SP 800-90B entropy source for key generation. The

DRBG is without df since the output of the conditioner is full entropy. The NRBG is a draft-

SP800-90C XOR Construction NRBG formed by XORing a seed with a DRBG output. The

module requests a minimum number of 128 bits of entropy from its Operational Environment per

each call. Therefore, the caveat “The module generates cryptographic keys whose strengths are

modified by available entropy”, as per IG 7.14, scenario 1b applies.

8.5. Key Storage

The cryptographic module does not perform persistent storage of keys. Keys and CSPs are

passed to the module by the calling application, or the calling application instructs the module to

generate them. The keys and CSPs are stored in memory in plaintext. Keys and CSPs residing

in internally allocated data structures (during the lifetime of a series of API calls) can only be

accessed using the module defined API. The JavaScript engine and/or operating system are

responsible for protecting memory and process space from unauthorized access.

8.6. Key Zeroization

The module is passed keys as part of a function call from a calling application and does not

store keys persistently. The calling application is responsible for parameters passed in and out

of the module. The Operating System and the calling application are responsible to zeroize all

keys.

The DRBG is zeroed when the module is removed from memory and memory is reclaimed by

the OS.

The output data path is provided by the data interfaces and is logically disconnected from

processes performing key generation, import, or zeroization. No key information will be output

through the data output interface when the module zeroizes keys.

 Page 12

9. Self-tests

9.1 Power-On Self-Tests

Power-on self-tests are run upon the initialization of the module and do not require operator

intervention to run. If any of the tests fail, the module will not initialize. The module will enter an

error state and no services can be accessed.

9.1.1 Integrity Tests

The module implements an integrity test using a validation HMAC-SHA-256 check. This is

implemented by the initialization function being fed the bytes of the module (the WebAssembly

bytes) and these are hashed to compare against a previously stored HMAC-SHA-256

(computed under a hardcoded key) which was computed and added to the package at build

time.

9.1.2 Known Answer Tests

The module implements known answer tests for:

● AES-GCM (encryption and decryption. Key size: 256-bits)

● AES-GMAC (encryption and decryption. Key size: 256-bits)

● AES-CBC (encryption and decryption. Key size: 256-bits)

● SP 800-90B CTR_DRBG (Key size: 256-bits)

● RSA (signature generation/signature verification and encryption/decryption. Key size:

2048-bit)

● SHA (SHA-256)

● ENT (P) SP800-90B Start-Up Health Tests

○ CHT superset of APT and RCT (Vendor Defined)3

9.1.3 On Demand Self Tests

On-demand self-tests may be run by the operator calling the defined API during operation of the

module. If any of these tests fail, the module will enter an error state, where no services can be

accessed by the operators. The module can be re-initialized to clear the error and resume FIPS

mode of operation. When initiated, the Known Answer Tests listed above are run.

9.2 Conditional Self-Tests

These tests are run during operation of the module. If any of these tests fail, the module will

enter an error state, where no services can be accessed by the operators. The module can be

re-initialized to clear the error and resume operation. The module performs the following

conditional self-tests:

3 Refer to Section 2.2 and 5 in Entropy Report.

 Page 13

● Pairwise Consistency Test - during RSA Key Pair generation

● DRBG Health Tests - Performed on DRBG, per SP 800‐90A Section 11.3. Required per

IG C.1.

● Continuous RNG Test – Performed on Entropy Input as defined in FIPS 140-2 section

4.9.2

9.3 Failure of Self-Tests

Failure of the self-tests places the cryptographic module in the error state, wherein no

cryptographic operations can be performed.

10. Mitigation of Other Attacks

The module is not designed to mitigate against other attacks outside of the scope of FIPS 140-

2.

11. Guidance and Secure Operation

The module is intended to be run in a single user operational environment, where each user

application and JavaScript ‘program’ runs in a virtually separated independent space, with

access enforcement. Operating systems such as Linux and browsers such as Chrome provide

such an operational environment.

To initialize the module, call initialize(initArray,initArray.length,hash) from a

JavaScript library, and pass in the bytes of the module as the Uint8Array initArray, as well

as the pre-calculated hash to validate against. Check the return code of this function to ensure it

is non-zero.

In order to operate securely, it is the user’s responsibility to:

● Manage and protect key material;

● Provide correctly formed and secure high-entropy keys when importing key material;

● Provide accurate data and comparison hash to the initialize function;

● Securely generate and provide IVs/nonces to functions requiring them;

● Avoid reusing key material or IVs/nonces;

● Call release() on all keys when no longer needed;

● Zeroize and destroy all plaintext when no longer needed; and

● Destroy the JavaScript engine process and allow the OS to reclaim memory once no

longer needed.

 Page 14

12. Acronym List

AES Advanced Encryption Standard

API Application Programming Interface

CAVP Cryptographic Algorithm Validation Program

CO Cryptographic Officer

DRBG Deterministic Random Bit Generator

ECC Elliptic Curve Cryptography

FIPS Federal Information Processing Standard

IV Initialization Vector

NDRNG Non Deterministic Random Number Generator

RNG Random Number Generator

RSA Rivest, Shamir, and Adleman Algorithm

WASM WebAssembly

